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Abstract. Belief-Desire-Intention (BDI) agents have beeninvestigated by many
researchersfrom both atheoretical specification perspectiveand apractical design
perspective. However, there still remains alarge gap between theory and practice.
The main reason for this has been the complexity of theorem-proving or model-
checking in these expressive specification logics. Hence, the implemented BDI
systemshave tended to use the three major attitudes as data structures, rather than
as modal operators. In this paper, we provide an alternative formalization of BDI
agents by providing an operational and proof-theoretic semantics of a language
AgentSpeak(L). This language can be viewed as an abstraction of one of the im-
plemented BDI systems (i.e., PRS) and allows agent programs to be written and
interpreted in a manner similar to that of horn-clause logic programs. We show
how to perform derivations in this logic using a simple example. These deriva-
tions can then be used to prove the properties satisfied by BDI agents.

1 Introduction

The specification, design, verification, and applications of a particular type of agents,
called BDI agents, have received a great deal of attention in recent years. BDI agents
are systems that are situated in a changing environment, receive continuous perceptua
input, and take actions to affect their environment, al based on their internal mental
state. Beliefs, desires, and intentionsare thethree primary mental attitudesand they cap-
turetheinformational, motivational, and decision components of an agent, respectively.
In addition to these attitudes, other notions such as commitments, capabilities, know-
how, etc. have been investigated. Sophisticated, multi-modal, tempora, action, and dy-
namic logics have been used to formalize some of these notions[2, 6, 8, 13, 18, 20, 21].
The complexity of theorem-proving and the compl eteness of these | ogics have not been
clear [12, 23].

On the other hand, there are a number of implementations of BDI agents[1, 3, 10,
17] that are being used successfully in critical application domains. These implemen-
tations have made a number of simplifying assumptions and modelled the attitudes of
beliefs, desires, and intentions as data structures. Also, user written plans or programs
speed up the computation in these systems. The compl exity of the code written for these
systemsand the simplifyingassumptionsmade by them have meant that theimplemented
systems have lacked a strong theoretical underpinning. The specification logics have



shed very littlelight onthe practical problems. Asaresult thetwo streams of work seem
to be diverging.

Our earlier attempt to bridge this gap between theory and practice has concentrated
on providing an abstract BDI architecture [14], that serves both as an idedlization of an
implemented system and also as a vehicle for investigating certain theoretical proper-
ties. Due to its abstraction this work was unable to show a one-to-one correspondence
between the model theory, proof theory, and the abstract interpreter. The holy grail of
BDI agent research isto show such a one-to-one correspondence with areasonably use-
ful and expressive language.

Thispaper makes another attempt at specifying such alogica language. Unlikesome
of thepreviousattempts, it takes asitsstarting point one of theimplemented systemsand
formalizes its operational semantics. The implemented system being considered is the
Procedural Reasoning System (PRS) [5] and its more recent incarnation, the Distributed
Multi-Agent Reasoning System (dMARS). Thelanguage AgentSpeak(L) can beviewed
as asimplified, textua language of PRS or dAMARS. The language and its operational
semantics are similar to the implemented system in their essential details. The imple-
mented system has more language constructs to make the task of agent programming
ease.

AgentSpeak(L) isaprogramming language based on arestricted first-order |anguage
with events and actions. The behaviour of the agent (i.e., its interaction with the envi-
ronment) isdictated by the programswrittenin AgentSpeak(L). Thebeliefs, desires, and
intentions of the agent are not explicitly represented as modal formulas. Instead, we as
designers can ascribe these notionsto agentswrittenin AgentSpesk(L). The current state
of the agent, whichisamodel of itsdlf, itsenvironment, and other agents, can be viewed
asitscurrent belief state; states which the agent wants to bring about based on itsexter-
nal or internal stimuli can be viewed as desires; and the adoption of programsto satisfy
such stimuli can be viewed as intentions. This shift in perspective of taking a simple
specification language as the execution model of an agent and then ascribing the mental
attitudes of beliefs, desires, and intentions, from an external viewpoint islikely to have
a better chance of unifying theory and practice.

In Section 2 we discuss the agent language AgentSpeak(L). The specification lan-
guage consists of a set of base beliefs (or facts in the logic programming sense) and a
set of plans. Plans are context-sensitive, event-invoked recipes that allow hierarchical
decomposition of goalsas well asthe execution of actions. Although syntactically plans
look similar to the definite clauses of logic programming languages, they are quite dif-
ferent in their behaviour.

Section 3 formalizes the operational semantics of AgentSpeak(L). At run-time an
agent can be viewed as consisting of a set of beliefs, a set of plans, a set of intentions,
a set of events, aset of actions, and a set of selection functions. The selection of plans,
their adoption asintentions, and the execution of theseintentionsare described formally
in thissection. Aninterpreter for AgentSpeak(L) is given and asimple example isused
to illustrate some of the definitionsand the operationa semantics of the language.

In Section 4, we providethe proof theory of thelanguage. The proof theory isgiven
asalabeled transition system. Proof rulesdefinethetransition of the agent from one con-
figuration to the next. These transitionshave a direct relationship to the operationa se-



mantics of the language and hence hel p to establish the strong correspondence between
the AgentSpeak(L) interpreter and its proof theory.

The primary contributionof thiswork isin opening up an aternative, restricted, first-
order characterization of BDI agents. We hope that the operational and proof-theoretic
semantics of AgentSpeak(L) will stimulate research in both the pragmatic and theoreti-
cal aspects of BDI agents.

2 Agent Programs

In this section, we introduce the language for writing agent programs. The al phabet of
the formal language consists of variables, constants, function symbols, predicate sym-
bols, action symbols, connectives, quantifiers, and punctuation symbols. Apart from first-
order connectives, we aso use! (for achievement), ? (for test), ; (for sequencing), and «
(for implication)!. Standard first-order definitionsof terms, first-order formulas, closed
formulas, and free and bound occurrences of variables are used.

Definition1. If b isapredicate symbol, and ¢1,...,t,, aretermsthen b(t,...,t,) or b(t) is
abdief atom. If b(t) and ¢(s) are belief atoms, b(t) A c(s), and —b(t) are beliefs. A belief
atom or its negation will be referred to as abelief literal. A ground belief atom will be
called a base belief.

For example, let us consider atraffic-world simulation, where there are four adjacent
lanes and cars can appear in any lane and move in the same lane from north to south.
Waste paper can appear on any of the lanes and a robot has to pick up the waste paper
and place it in the bin. While doing this the robot must not be in the same lane as the
car, asit runstherisk of getting run over by the car. Consider that we are writing agent
programs for such arobot.

Thebeliefsof such an agent represent the configuration of thelanes and thelocations
of the robot, cars, waste, and the bin (i.e, adj acent ( X, Y), | ocati on(robot,
X),l ocation(car, X),etc.). Thebasebeliefsof suchanagent aregroundinstances
of belief atoms (i.e., adj acent (a, b), | ocati on(robot, a),etc).

A goal? is a state of the system which the agent wants to bring about. We consider
two types of goal s: an achievement goal and atest goal. An achievement goal, written as
lg(t) statesthat the agent wantsto achieve astate where g(t) isatruebelief. A test goal,
writtenas?¢(t) statesthat theagent wantstotest if theformulag(t) isatruebelief or not.
In our example, clearing the waste on a particul ar lane can be stated as an achievement
god,i.e, !cl ear ed(b) , and seeing if the car isin aparticular lane can be stated as a
test god,i.e, ?l ocati on(car, b).

Definition 2. If g isapredicatesymbol, and,,....t, aretermsthen!g(¢y,....t,) (or lg(t))
and ?g(t1,....t,) (Or 7¢(t)) are goals.

! In the agent programs we use & for A, not for -, <- for «. Also, like PROLOG, we require
that all negations be ground when evaluated. We use the convention that variables are written
in upper-case and constantsin lower-case.

2 In this paper, we discuss only goals, and not desires. Goals can be viewed as adopted desires.



When an agent acquires a new goal or notices a change in its environment, it may
trigger additionsor deletionstoitsgoalsor beliefs. Werefer totheseeventsastriggering
events. We consider the addition/deletion of beliefs/goal s as the four triggering events.
Additionisdenoted by the operator 4+ and deletion is denoted by the operator —. In our
example, noticing the wastein acertain lane X, writtenas +| ocat i on(wast e, X)
or acquiring thegod to clear thelane X, writtenas+!cl ear ed( X) are exampleof two
triggering events.

Definition 3. If b(t) isabelief atom, lg(t) and 7¢(t) are goals, then +5(t), —b(t) +!g(t),
+7g(t), —!g(t), —7g(t) aretriggering events.

The purpose of an agent isto observe the environment, and based on its observation
and itsgoa s, execute certain actions. These actionsmay change the state of the environ-
ment. For example, if move isan action symbol, the robot moving from lane X to lane
Y, written as move( X, Y) , is an action. This action resultsin an environmental state
wheretherobot isinlane Y and isno longer in lane X.

Definition 4. If a isan actionsymbol and ¢4,...,t,, arefirst-order terms, then a(t4,...,t,)
or a(t) isan action.

An agent has planswhich specify the means by which an agent should satisfy an end.
A plan consistsof ahead and abody. The head of aplan consistsof atriggeringevent and
acontext, separated by a“:”. The triggering event specifies why the plan was triggered,
i.e., the addition or deletion of a belief or goal. The context of a plan specifies those
beliefsthat should hold in the agent’s set of base beliefs, when the planistriggered. The
body of aplan isa sequence of goas or actions. It specifies the goals the agent should
achieve or test, and the actions the agent should execute. For example, we want to write
aplan that getstriggered when some waste appears on aparticular lane. If therobot isin
the same lane as the waste, it will perform the action of picking up the waste, followed
by achieving the goal of reaching the binlocation, followed by performing the primitive
action of putting it inthe bin. This plan can be written as:

+l ocation(waste, X):1ocation(robot, X) &
[ ocation(bin,Y)
<- pick(waste);
I'l ocation(robot,Y);
drop(waste). (PD)

Consider theplanfor therobot to changelocations. If it hasacquired thegoal to move
toalocation X and it isalready inlocation X, it does not have to do anything and hence
thebody ist r ue. If the context issuch that it isnot at the desired |ocation then it needs
to find an adjacent lane with no carsin it, and then moveto that lane.

+!'l ocation(robot, X):location(robot, X) <- true. (P2)

+!'l ocation(robot, X):location(robot,Y) &
(not (X=Y)) &



adj acent (Y,2) &
(not (location(car, 2)))
<- move(Y, 2);
+!'l ocation(robot, X). (P3)

More formally, we have the foll owing definition of plans.

Definition 5. If e isatriggeringevent, b1,...,b,, arebelief literals,and 4 ,...,h,, aregoas
or actionsthene:by A ... A by, < hq;..;hy, isaplan. The expression to the left of the
arrow is referred to as the head of the plan and the expression to the right of the arrow
isreferred to as the body of the plan. The expression to theright of the colon in the head
of aplanisreferred to as the context. For convenience, we shall rewrite an empty body
with the expression true.

With thiswe compl ete the specification of an agent. In summary, adesigner specifies
an agent by writing a set of base beliefs and a set of plans. Thisis similar to a logic
programming specification of facts and rules. However, some of the mgjor differences
between alogic program and an agent program are as follows:

— Inapurelogic program thereis no difference between a goal in the body of arule
and the head of arule. In an agent program the head consists of atriggering event,
rather than agoal. Thisallowsfor a more expressive invocation of plans by allow-
ing both data-directed (using addition/del etion of beliefs) and goal-directed (using
addition/deletion of goals) invocations.

— Rulesin apurelogic program are not context-sensitive as plans.

— Rules execute successfully returning a binding for unbound variabl es; however, ex-
ecution of plansgenerates a sequence of ground actionsthat affect the environment.

— Whileagoal isbeing queried the execution of that query cannot beinterruptedin a
logic program. However, the plansin an agent program can be interrupted.

3 Operational Semantics

Informally, an agent consists of a set of base beliefs, B, a set of plans, P, a set of events,
E, aset of actions, A, aset of intentions, I, and three selection functions, Sg, So, and Sz.
When the agent notices a change in the environment or an externa user has asked the
system to adopt a goal, an appropriate triggering event is generated. These events cor-
respond to external events. An agent can also generate internal events. Events, interna
or external, are asynchronoudly added to the set of events E. The selection function S¢
selects an event to process fromthe set of eventsE. Thiseventisremoved fromE and is
used to unify with thetriggering events of the plansin the set P. The planswhosetrigger-
ing events so unify are called relevant plans and the unifier is called the relevant unifier.
Next, the relevant unifier is applied to the context condition and a correct answer sub-
gtitutionisobtained for the context, such that the context isalogical consequence of the
set of base beliefs, B. Such plans are called applicable plans or options and the compo-
sition of therelevant unifier with the correct answer substitutionis called the applicable
unifier.



For each event there may be many applicable plans or options. The sdlection func-
tion Sp chooses one of these plans. Applying the applicable unifier to the chosen option
yieldstheintended means of respondingto thetriggering event. Each intentionisastack
of partialy instantiated plans or intention frames. In the case of an externa event thein-
tended means is used to create a new intention, which isadded to the set of intentionsl.
In the case of an internal event to add a goal the intended means is pushed on top of an
existing intention that triggered the internal event.

Next, the selection function Sz selects an intention to execute. When the agent ex-
ecutes an intention, it executes the first goal or action of the body of thetop of thein-
tention. Executing an achievement goal is equivalent to generating an internal event to
add the goal to the current intention. Executing atest goa isequivalent to finding a sub-
stitution for the goal which makesit alogical consequence of the base beliefs. If such a
substitution is found the test goa is removed from the body of the top of the intention
and the subgtitution is applied to the rest of the body of the top of the intention. Exe-
cuting an action results in the action being added to the set of actions, A, and it being
removed from the body of the top of the intention.

The agent now goesto the set of events, E, and thewhole cycle continuesuntil there
areno eventsin E or thereisno runnabl eintention. Now we formalizethe above process?.

The state of an agent at any instant of time can be formally defined as follows:

Definition 6. An agent isgiven by atuple <E,B,RPI,A,S¢ ,So ,Sz>, where Eisaset of
events, Bisaset of basebdliefs, Pisaset of plans, | isaset of intentions, and A isaset of
actions. The selection function S¢ selects an event from the set E; the selection function
So selects an option or an applicable plan (see Definition 10) from a set of applicable
plans; and Sz selects an intention from the set I.

The sets B, P, and A are as defined before and are relatively straightforward. Here
we describethesatsEand I.

Definition 7. Theset | isaset of intentions. Each intentionisastack of partiallyinstan-
tiated plans, i.e., planswhere some of the variables have been instantiated. An intention
isdenoted by [p11...Ip.], where p; isthe bottom of the stack and p, is thetop of the
stack. The elements of the stack are delimited by . For convenience, we shall refer to
theintention[ +! true: true <- true] asthetrueintentionand denoteit by T.

Definition 8. The set E consists of events. Each event isatuple <e, i>, wheree isa
triggering event and 7 isan intention. If theintention ¢ isthe true intention, the event is
called an external event; otherwiseit isan internal event.

Now we can formally define the notion of relevant and applicable plansand unifiers.
Aswe saw earlier, atriggering event d fromthe set of events, E, isto be unified with the
triggering event of all the plansin the set P. The most general unifier (mgu) that unifies
these two events is called the relevant unifier. The intention ¢ could be wither the true
intention or an existing intention which triggered thisevent. More formally,

% The reader can refer to the Appendix for some basic definitionsfrom first-order logic and horn
clauselogic.



Definition9. Let Sz (E)=e=< d,i >andletpbee : by A.. .Aby < hy;...;h,. The
plan p isarelevant plan with respect to an event ¢ iff there existsamost general unifier
o such that do = ec. o iscalled therelevant unifier for e.

For example, assume that the triggering event of the event selected from E is
+!'l ocati on(robot, b).

Thetwo plansP2 and P3 arerelevant for thisevent withthere evant unifier being {X/ b}.

A relevant planisalso applicableif thereexistsasubstitutionwhich, when composed
with the relevant unifier and applied to the context, is alogical conseguence of the set
of base beliefs B. In other words, the context condition of arelevant plan needs to be a
logical consequence of B, for it to be an applicable plan. More formally,

Definition10. A plan p, denotedby e : b1 A ... A by, < hy;...;h, iSan applicable
plan with respect to an event ¢ iff thereexistsarelevant unifier o for e and thereexistsa
substitution# such that V(b1 A...Ab, )of isalogica consequence of B. The composition
ofl isreferred to as the applicable unifier for e and ¢ isreferred to asthe correct answer
substitution.

Continuing with the same example, consider that the set of base beliefsis given by

adj acent (a, b).

adj acent (b, c).

adj acent (c, d).

| ocation(robot, a).
| ocati on(waste, b).
| ocation(bin,d).

The applicable unifieris{X/ b, Y/ a, Z/ b} andonly planP3 isapplicable.

Depending on the type of the event (i.e, internal or external), the intention will be
different. In the case of external events, theintended meansis obtained by first selecting
an applicable plan for that event and then applying the applicable unifier to the body of
the plan. Thisintended meansis used to create anew intention which isadded to the set
of intentionsl.

Definition11. Let Sp(O.) = p, where O, isthe set of all applicable plansor optionsfor
theevente=< d,i >andpise : by A.. .Aby, < hy;...; h,. Theplanpisintended with
respect to an event ¢, where i isthetrue intention iff there exists an applicable unifier o
such that [+!true : true < truef(e : by A ... Aby < hy;. .. hy)o] €1

In our example, the only applicable plan P3 will be intended with the intention | now
being

[+l ocation(robot,b): location(robot,a) &
not(b = a) &
adj acent (a, b) &
not (1l ocation(car, b)) <-
nove(a, b);
+!'l ocation(robot,b)].



Inthe case of interna eventstheintended means for the achievement goal is pushed
on top of the existing intention that triggered the internal event.

Definition 12. Let Sp (O.) = p, where O, isthe set of al applicable plansor optionsfor
theevente =< d,[p1i.. If tc1 AL Ay <lg(t); ha; ... hy] >, andpis+ig(s): b1 A
.. Abpy < kq;.. .5 k;. Theplan p isintended with respect to an event ¢ iff there exists
an applicableunifier o suchthat [p11.. .3f e AL Acy «lg(t); ho;. .. haf(+lg(s) :
bi A Aby)o — (ki;.. . kj)o; (ha; ..o hy)o] €1

The above definitionisvery similar to SL D-resol ution of logic programming languages.
However, the primary difference between the two isthat the goa ¢ is caled indirectly
by generating an event. This givesthe agent better real-time control asit can changeits
focus of attention, if needed, by adopting and executing a different intention. Thus, one
can view agent programs as multi-threaded interruptiblelogic programming clauses.

When an intentionisselected and executed, thefirst formulain thebody of thetop of
theintention can be: (a) an achievement goal; (b) atest goal; or (c) an action; or (d) true.
In the case of an achievement goal the system executes it by generating an event; in the
case of atest god it looks for amgu that will unify the goal with the set of base beliefs
of the agent, and if such an mgu existsit appliesit to the rest of the means; in the case
of an action the system adds it to the set of actions A; and in the last case the top of the
intention and the achievement goal that was satisfied are removed and the substitution
isapplied to therest of the body of that intention.

Definition 13. Let Sz(I) =4, whereiis[pif.. .if te1 AL Ay «lg(t); ha; .. .5 Ry
Theintention is said to have been executed iff < +!g(t),i > € E.

Definition 14. Let Sz(I) =i, whereiis[pii.. . If te1 AL Acy «g(t); ha;.. .5 hy).
Theintention 7 is said to have been executed iff there exists a substitution # such that
Vg(t)é isalogica consequence of B and i isreplaced by [p11.. I(f :c1 A.. . Acy)b +
haf; .. .5 h,0].

Definition 15. Let Sz(I) = ¢, whereiis[pif.. .if te1 AL Ay ¢ a(t); ha;.. .5 hy).
Theintention: issaid to have been executed iff a(t) € A, andiisreplaced by [p11.. .1f :
1A Aey < ha;.. 5 hy).

Definition 16. Let Sz(I) = ¢, whereiis[p1.. ip.—1flg(t) 1 eca Ao  Acy  true],
wherep,_1 iSe : by A ... A by «lg(s); ha;...; h,. Theintention: is said to have
been executed iff there exists a substitution ¢ such that g(t)? = g(s)é and ¢ is replaced
by [p1t.. ips—1i(e i by AL Abg)0 — (ha;...;hy)0].

Continuing our example, we would execute | and by Definition 15 we would add
{nove(a, b) } to A and change | to be as follows:

[+l ocation(robot,b): location(robot,a) &
not(b = a) &
adj acent (a, b) &
not (1l ocation(car, b)) <-
+!'l ocation(robot,b)].



In the next iteration, after the robot moves from a to b the environment will send the
agent a belief update event to change the location of the robot to b. Thiswill result in
thebelief| ocat i on(robot, b) being addedtotheset B andtheevent +I ocat i on
(robot, b) being added to the set of events, E. Asthere are no relevant plansfor this
the system will choose the above intention to execute. Executing this will result in an
intention add event being generated and added to the set of events, E; in other words E
is{<+!l ocation (robot,b),i >}, wherei isthe same intention as before. By
Definition 12 the relevant plan in this case is P1 with the relevant unifier {X/ b}. This
plan is also applicable and the applicable unifier is the same. Asthe body of this plan
ist rue, theintention is satisfied and the set of events is empty. This terminates the
execution until the next event isadded into the set E.

From the above definitions and description of the operational semantics of the lan-
guage AgentSpesk(L) we canwritean interpreter for AgentSpeak(L). Figure 1 describes
such an interpreter. We use the function top to return the top of an intention stack; the
functionhead toreturnthehead of an intended plan; thefunctionbody to returnthe body
of an intended plan. In addition, thefunctions first and rest are used to return thefirst
element of a sequence, and al but the first element of a sequence. The function push
takes an intention frame and an intention (i.e., stack of intention frames) and pushesthe
intention frame on to the top of the intention. The function pop takes an intention as an
argument and returns the top of the intention.

4 Proof Theory

So far we have presented the operational semantics of AgentSpeak(L). Now we briefly
discussits proof theory based on |abel ed transition systems.

Definition 17. A BDI transition systemisapair (I'; ) consisting of:

— A set I of BDI configurations; and
— A binary transitionrelation C I" x I'.

We define a BDI configuration as follows:

Definition 18. A BDI configurationisatupleof (F;, B;, I;, A;, i), where E; C F, B;
CB,I;CI,A; C A, and i isthelabe of thetransition.

Notethat we have not taken the set of plans, P, in the configuration as we have assumed it
to be constant. Also, we do not explicitly keep track of goalsas they appear asintentions
when adopted by the agent. Now we can write transition rules that take an agent from
one configuration to its subsequent configuration.

The following proof rule IntendEnd gives the transition for intending a plan at the
top level. It states how the agent’s set of intentions| changes in response to an externa
event that has been chosen (by the S¢ function) to be processed.

< {...,< —Hg(t),T>,...},Bi,fi,Ai,i >

IntendEnd
(Intend End) — 5 Tt} A i+ 1>




Algorithm Interpreter()

whil e E#0do
e=<d,1>=8¢(E);
E =FEl¢;

O. ={pf | § isan applicable unifier for event ¢ and plan p}
i f externa-event(e)t hen | =1 U [So(0.)];
el se push(S»(0¢)a, 1), where o is an applicable unifier for ¢;
case first(body(top(Sz(1)))) = true
x = pop(Sz(1));
push(head(top(Sz(1)))8 «+ rest(body(top(Sz(1))))8, Sz(1)),
where § is an mgu such that X8 = head(top(Sz(1)))9;
case first(body(top(Sz(1)))) =1g(t)
E=EU <+lg(t),Sz()>
case first(body(top(Sz(1)))) = 7g(t)
pop(S~(1));
push(head(top(Sz(1)))8 «+ rest(body(top(Sz(1))))8, Sz(1)),
where 6 is the correct answer substitution
case first(body(top(Sz(1)))) = a(t)
pop(S~(1));
push(head(top(Sz(1))) « rest(body(top(Sz(1)))), Sz(1));
A=AuUu{a(t)};
endwhi | e.

Fig. 1. Algorithm for the BDI Interpreter

wherep=+lg(s) : b1 A.. . Aby  h1;...;hy € P,Se(E) =< +!g(t), T >, g(t)o
=g(s)c and ¥ (b1 A...Aby, )8 isalogica consequence of B;.

The proof rule IntendMeansis similar to the previous proof rule, except that the ap-
plicable plan is pushed at the top of the intention given as the second argument of the
chosen event. More formally we have,

< {~~~;<+!g(t);j>;~~~};Bi;{~~~;[pli~~~ipz],~~~},Ai,i>
IntendMeans -
(Inten T L 3B it il ATl

wherep, = f te1 A Ay <lg(t);ha;. . shn, p=+lg(s) t b1 AL A by
ki;... ke, Se(B)=< +lg(t), 7 >, jis[pii. . .Ipn] >, 0(t)o =g(s)o and ¥ (c1 A...Acy )b
isalogica consequence of B;.

Next, we have four proof rulesfor execution. The four proof rules are based on the
type of the goal or action that appears as the first litera of the body of the top of an
intention chosen to be executed by the function Sz. We give the execution proof rule
for achieve ExecAch, the other proof rules can be written analogoudly.

E;,Bi,{....[;t...1f: A lg(t); has .. hyl, .}, Agyd
(E;L‘ecAch)< { [pii. ifrein ey <g( 1 2 ..} 1>
.+ y .

<EU{< Hlg(t).7 >}, Bi .. [t 4l 1 Ai+ 1>

whereSz(L) =7 =[p1i.. . ip]andp. =f :ci A Ay «lg(t); ha;. .. hy).



Although we have given the proof rules only for additions of goas, similar proof
rules apply for deletion of goals, and addition and deletion of beliefs.

With these proof rules one can formally define derivationsand refutations. The def-
inition of derivationsis straightforward and is a sequence of transitionsusing the above
proof rules.

Definition19. A BDI derivation is afinite or infinite sequence of BDI configurations,
1.6, Y0y - Yy - o

Thenotionof refutationin AgentSpeak(L) iswithrespect to aparticular intention. In
other words, the refutation for an intention startswhen an intentionis adopted and ends
when the intention stack is empty. Thus, using the above proof rules we can formally
prove certain behavioura properties, such as safety and liveness of agent systems, as
was done e sawhere [15]. Furthermore, there is a one-to-one correspondence between
the proof rules discussed in this section and the operational semantics discussed in the
previous section. Such acorrespondence has not been possibl e before, because the proof
theory (usually based on multi-modal |ogics) has been far removed from the redlities of
the operational semantics.

In additionto theinternal eventsconsideredinthispaper (i.e., addition of intentions),
one can extend the operational semantics and proof rules with respect to other internal
events, such as deletion of intentions, and success and failure events for actions, plans,
gods, and intentions.

The body of the plans considered in this paper includes only sequences of goals or
actions. Other dynamic logic operators, such as non-deterministic or, parald, and it-
eration, operators can be alowed in the body of plans. In addition, assertion and dele-
tion of beliefsin plan bodies can also be included. Another useful feature of theimple-
mented system dMARS isdifferent post-conditionsfor successful and failureexecutions
of plans. The operational semantics and proof rules can once again be modified to ac-
count for the above constructs.

5 Comparisonsand Conclusion

A number of agent-oriented languagessuchas AGENTO [17], PLACA (PLAnning Com-
municating Agents) [19], AgentSpeak [22], SLP [16, 4], and CONGOLOG [9] havebeen
proposed in the literature.

AGENTO and its successor PLACA can model beliefs, commitments, capabilities,
and communications between agents. These attitudes are treated as data structures of
an agent program. An interpreter that can execute such agent programs are described.
However, the authorsdo not provideaformal proof theory or justify how the data struc-
tures capture the model-theoretic semantics of beliefs, commitments, and capabilities.
In contrast, the work described here discusses the connections between the interpreter
and a proof theory based on labeled transition systems.

SLP or Stream Logic Programming is based on reactive, guarded, horn clauses. A
clausein SLP consistsof aguard and abehaviour. The guardisfurther decomposed into
an head and a boolean constraint. The boolean constraint is similar to our context. The
head in SLP isan object and the body is a network of concurrent objects connected by



communi cation message sl ots. Behaviour isspecified by object replacement. The execu-
tion model of SLP and AgentSpeak(L) are fundamentally different. The behaviour of an
agent to a particular external stimuli is captured in asingleintention, as astack of com-
mitted sub-behaviours. This provides a globa coherence absent in SLP. For example,
consider an agent that wantsto drop itsintention because it no longer needsto achieve a
given top-level god. Killing such an intention would be much easier in AgentSpeak(L)
thanin SLP.

The semantics of CONGOL OG isbhased on situation ca culus. Althoughit providesa
richer set of actions than what has been discussed here, itisessentially asingleintention
(or single-threaded) system, unlike AgentSpeak(L). The language AgentSpeak [22] is
an object-oriented analogue of AgentSpeak(L).

AgentSpeak(L) isatextual and simplified version of the language used to program
the Procedura Reasoning System [3] and itssuccessor dMARS. These implementations
have been in use since the mid-1980s. Other agent-oriented systems, such as COSY [1],
INTERRAP [10], and GRATE* [7], have been built based on the BDI architecture. The
formal operationa semantics given here could apply to some of these systems as well.
However, amorethoroughanalysisof these systemsand their relation to AgentSpeak(L)
is beyond the scope of this paper.

Bridging the gap between theory and practice in the field of agents, and in particu-
lar the area of BDI agents, has proved elusive. In this paper, we provide an aternative
approach by providing the operationa semantics of AgentSpesk(L) which abstracts an
implemented BDI system. The primary contribution of thiswork isin opening up an al-
ternative, restricted, first-order characterization of BDI agents and showing aone-to-one
correspondence between the operational and proof-theoretic semantics of such a char-
acterization. We are confident that this approach is likely to be more fruitful than the
previous approaches in bridging the gap between theory and practice in this area and
will stimulate research in both the pragmatic and theoretical aspects of BDI agents.
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Appendix

Definition 20. An atom of theform s = ¢, where s and t aretermsiscalled an equation.

Definition 21. A substitutionisafiniteset {z1/t1,...z,/t, }, wherez,,...,z,, aredistinct
variables, and t1,...,t, aretermssuch that z; # ¢; for any i from 1..n.

Definition 22. The application of a substitution § = {z+/t4,...,z,/t,} to avariable z;,
written as z;0, yiddst; iff z;/t; € § and z; otherwise. The application of ¢ to aterm or
formulais the term or formula obtained by simultaneously replacing every occurrence
of z; by ¢; for al i from 1to n.



Definition23. Let§ ={z1/t;,...,xnltn} ando = {y1/51,...ym/sm }. The compositionfo
of 6 and o isthe substitution obtained from the set: {z+/t10,....z,/t,0} U 6 by remov-
ing al x;/t;0 for which z; = ;0 (1 <4 < n)and removing those y;/t; for which y;
{21,020} (1< 7 <m) [11].

Definition 24. A substitution o isasolutionor unifier of aset of equations {s; =1, ...,
sp =tn}iff s;oc =t;0 fordl i = 1,...,n. A substitution o ismore general than 6 iff there
isasubgtitutionw such that cw = 6. A most general unifier (mgu) of two terms (atoms)
isamaximally general unifier of the terms.
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