Luca F. Beltrami Goal Based Agents in a Competitive Environmen

1 Project Report
Goal Based Agents in a Competitive

Environment

A 3" year project by:

Luca F. Beltrami

Supervised by:

Nathan Griffiths

1.1 Abstract

The project presents an implementation of the Spreading Activation model of Al by Pattie Maes.
The project includes a world framework where the agents can live, an implementation of the model
that attempts to overcome the limitations of the original paper and an agent that demonstrates the

capabilities of the implementation.

Keywords
Artificial Intelligence, Agent, Spreading Activation, Simulation, OpenGL

1/51

Luca F. Beltrami Goal Based Agents in a Competitive Environmen

1.2 TOC
I 8 o) (=Tt A AU 10) il PPN 1
I AN 013 v 4 Vo] USSP PPPRRRR 1
1 1O L SR 2
RGN a1 oo o 1 o T) o WSt 3
G TR B O] o} =Tt w AT S PR TPRPPR 3
1.3.2 ACAAEIMC ALIIIS .. ciiiiiiiiieeeii ettt et ettt e e et e e et e e et e e et s e et e eeaaeetaaeeataeatnaeetaneesaneannnns 3
I N I vl 4 =0) oy RNt 4
1.4.1 Spreading Activation MOGEL........couuiiiiiiiiiii et e e et a e e abans 4
1.4.2 MOdel LImItatiomnS. .. eeuueeeiiieiie ettt ettt e e et e et e e e tee e eeb e e eta s e eta e e ebn e eeaaeeaeans 5
1.4.3 Extensions t0 the MOdel.........cooiuuiiiiiiiii et e et e e et e e et e e eae e e et e eeaa s 7
1.4.4 OtheT A PIOACKHES. ii it e e e e e et e e ae e e e e et e st e st e st e s e saaee st estestnesrnaaanns 8
1.4.5 Spreading Activation model vs other AT mOdels........c.ceviiiiiiiiiiiiiiiiiiiiirie e 10
1.5 Project OrganiSation.....ccuuiiniiiiiiiii it e e e et e e e et e e e et et e e e e ea e e e e eans 11
TR B 84 T =1 o] s T PR 11
L. 2 WY Gttt ettt e e e e e e e e ettt ettt e e e e e e e e e ettt et et bbbt e e as 11
1.5.3 Development methodology and t00IS.........ceiuuiiiiiiiiiiiiiieii e e e e e e e e e et e e e eeaes 12
1.6 WOTLA frameWOTK.ceuiiiiii et e et et et e et e e e et e et e e e eaneeaneeannaes 13
1.6.1 General design CONSIAETATIONS. .. .cuuuiiiiiiiiiiiieiie ettt e e et e e ebs e et s e eaa e eeeaaeeaes 13
ST L0 o U TR PR 16
IO T 2 s L L 1T P TP PPN 17
O N BT 01 c) o = o PP RRTRUPPR 18
OIS O} 031 o 1= 1 AP PP PPPR PPN 19
I O ST @11 o 1 L S PR 20
1.7 Al imPlementation. et e et eaaa e 21
1.7.1 General design CONSIAETration........c.uiiiiiiiiiiie i et e e e e e et e e e e e s e e eeeneaanas 21
A € = § o) s B v/ TE - TP 22
1.7.3 The StateSyMDOL CLaSS......iiiiiiiiiiei ittt e et e e et e e et e e et s aeteeesaneasensaesnns 25
1.7.4 The GoalSYMDOL ClaSS....iiiuiiiiiiiiiiiie ettt e e et s e et s eeaaeeeeaaseeneneees 25
1.7.5 The CompetenceTemplate Class.........ciuuiiiiiiieiiiieie et e e e e e et e et e e e e e e e e eeens 26
A T N o TR Y=Y [Tt o) o] - 1S PPN 27
1.7.7 THE AQENE ClaSS..uiiiuueiiiiiiiiieeeiiie ettt ettt e e tte e et e ettt e e eateeetenseeteneeaaeneeatnnsaesnnsessnnerssnnsessnneessnnees 27
IS N TR N01 o) o - 1T PP 30
1.8.1 EXPECted DENAVIOUTciviiiiiiiiiii ettt e et e et e e et e e ebe e e et e eebeeaanneaaaannns 30
1.8.2 Spreading Activation NETWOTK........c.uiiiiiiiiiiii et e e e et e e et s eeaneaaannes 30
RS A =Y L 1 (o) s ORI 31
e I A 00 /=T 0 LT T OSSPSR 31
1.9.2 POT OTINAIICE. ... iitieeiie ettt ettt e et e et e e et s e et e e et e e et s eatansaeaaeeanneesnnaassnseasnnsarsnnnns 31
S TG s 3 0 = o i ST OO PPURPOPPTU PP 31
IS IR O =TSR il PPt 32
I O b o =) Ao) - SR 33
1.10.1 WOTLA FramEWOTK.......ciiuuiiiiiieiie ettt ettt et e e e tae ettt e e et e e et s eeaaeesaneeesanseeraneeenns 33
R 010N OSSR PUPUPPPTRPPINt 34
I O N1 o) it o - TSRO UPPR PPN 34
) I 0 o od 10370) o FO PP 35
1.11.1 Usefulness of the model in PracCtiCe.......ccuuiiiiiiiiiiiiiiiiiiee e ee e e e e e e 35
1.11.2 Project suCCESS €VAlUAtION.......ciiiuiiiiiiiiiiie ettt e e et e e et e e et e eaaaneeetaneaeaaaes 35
1.12 Acknowledgements and thankKs..........cccouiiiieiiiiiiii e 35
AN 0 013 Lo h (ol S USSP 36
2.1 Appendix A: The model file format............cooiiiiiiiii e 36
2.2 Appendix B: File LiSt... oot et a e aaaaas 37
2.3 Appendix C: Running the demos and building the project.........ccc.ccoeiiiiiiiiiiiiiiininnnnn.. 38
3 BibliOgTaphy ... e 39

Luca F. Beltrami Goal Based Agents in a Competitive Environmen

1.3 Introduction

1.3.1 Objectives

The objective of this project is to provide an implementation of Pattie Maes Spreading Activation

Networks as detailed in “How to do the right thing” [MAES&9].
The project will provide:

« A number of classes to that implement the basic functionality of the agents, such as building
the agent network and spreading energy though it. The classes will be extendible to allow

simple implementation of agents in a particular domain.

- A world framework where agents can exist and act and a output system to show the state of
the world in real time. The world framework should be able to support a few tens of agents

at a time.
Some sample agents that demonstrate the capabilities of the agent implementation.

For flavour reasons the world framework is taken to be a “fantasy” world where agents are heroes
fighting monsters and hunting treasures for profit and glory. This “setting” has very little bearing on

the actual project apart from justifying/requiring a combat system.

1.3.2 Academic Aims

The basic description of the Spreading Activation Model [MAES89] makes assumptions about the
environment the agents will act in such as agent actions being atomic and the agent already
knowing most of the world (for further discussion see the section on model limitations). This
project tries to adapt the model to an environment where most of these assumptions cannot be

made.

Another challenging aspect of the project is the design of the world framework so that the agent
design is not tied to it and both are easily extendible. Since the framework will make no use of

concurrent threads or processes it will need to provide apparent concurrency for the agents.

3/51

Luca F. Beltrami Goal Based Agents in a Competitive Environmen

1.4 Al theory

1.4.1 Spreading Activation Model
The Spreading Activation model was first presented by Pattie Maes in 1989 in her paper “How to
do the right thing”. The model is an attempt at bridging the gap between traditional planning and

reactive agents by taking a novel approach to the whole problem.

Maes' agents are constructed as “a society of interacting, mindless agents” [MAES89](p3), in other
words they are built out of simple modular blocks each of which is capable of carrying out one
“action”. The appeal of this design comes from the distributedness, modularity, emergent global

functionality and robustness of the system.

The novelty is not in the way the agent is structured but rather in the way the agent is controlled.
More specifically Maes rejects the idea that bureaucratic modules whose only use is to decide

which other modules should be used are necessary to such a system.

In Maes' approach the “action” modules themselves “decide” which other modules should be
activated and which should be inhibited, using a simple but powerful algorithm that features some

global parameters used to tweak its behaviour.

In Maes' own words “the algorithm completely integrates characteristics of both [symbolic and
connectionist] approaches by using a connectionist computational model on a symbolic, structured

representation” [MAES89](p5).

The abstraction the model uses to decide which module to activate is to give each module a certain

amount of “activation” energy and the module with the highest amount of energy is picked.

The modules (henceforth known as competences) are defined by a quadruple (c, a, d, o) where ¢
(the prerequisite list) is the set of propositions that have to be true for the module to be executable, a
(the add list) is the set propositions that will be true after the module has finished executing and d
(the delete list) is the set of propositions that will be false after the module has finished executing
and o is the current energy level of the competence. Of course this is the definition of a competence
from the Spreading Activation algorithm point of view, every competence must also define how it
actually carry out its job upon activation but this is irrelevant as far the algorithm is concerned.
Goals are just propositions. All the propositions that are used by the system (as pre or post

conditions or goals) will henceforth be knowns as symbols.

4/51

Luca F. Beltrami Goal Based Agents in a Competitive Environmen

The system can be seen as a network where competences and symbols are nodes. The add, delete

and prerequisite lists define the edges.

Energy is injected in the network by state and goal symbols. True state symbols inject energy in all
the competences that list them as prerequisites, goal symbols inject energy in all the competences
that have them in the add list and remove energy from all the modules that have them in the delete

list.

On other side

Drawing 1: A simple agent

Energy is then spread between competences. A competence that is not executable (not all its
prerequisite list is true) will spread energy to the competences that might make their prerequisites
true and executable competences will spread energy to competences that depend on their add list to
become active since its likely they will be active in the near future. Competences will also remove

energy from other competences that might remove symbols in their prerequisite list.

Formal definitions of how energy is to be spread are given in the paper [MAES89](section 3)

1.4.2 Model Limitations

1.4.2.1 Atomic competences
The model does not processing while a competence is active, in fact it considers activating a
competence an atomic step. This means that changes to the environment that occur while the
competence is executing which might not be atomic and take considerable time, such as a
competence that requires extensive movement, are ignored until the whole action has been carried
out. This might just lead to suboptimal behaviour in some situations (such as ignoring a precious
treasure that is revealed while moving past it) and to downright irrational behaviour in others (such
as continuing a combat that has become unwinnable), unless competences are more than

“mindless”.

The approach taken in this project does not fully solve this problem, but the environment is
constantly evaluated, even while a competence is executing so that nothing will be missed, even if it
not instantly acted upon and some intelligence is embedded in the competences to ensure that

irrational courses of action are abandoned (see section 1.4.3.1)

5/51

Luca F. Beltrami Goal Based Agents in a Competitive Environmen

1.4.2.2 Single exit competences
There is an implicit assumption in the model that competences will either succeed and their add and
delete lists will be applied to the current state or it will fail and the state will remain the same,
although what the exact semantics of the failure are is unclear since the state of the network would

not be the same (the failed competence has 0 energy).

Still there is no provision for competences that might result in different outcomes depending on

events beyond the agent's control.
There are 2 possible approaches to solving this problem:

The competence provides add and delete lists only for one outcome. The symbols that
represent the other outcomes are not connected to the competence. This is not a satisfactory

solution because the energy spread semantics are broken.

« The agent provides all the possible outcome symbols in its add and delete lists, but doesn't
guarantee activating any. While this solution still breaks the energy spread semantics

slightly it does mesh better with the rest of the design.

1.4.2.3 Static network
As mentioned in section 6 of the paper [MAES89] the entire network must be instanced before the
agent can tart using it, otherwise, if nodes where added at runtime, energy levels in the network
would be uneven and would lead to suboptimal decisions. Moreover no variables can be used in the
definition of competences or symbols. To avoid these limitation symbols and competences use
indexical-functional aspects to define symbols competences and goals. This way every competence
and symbol has to do some very simple searches (possibly greedy algorithms are enough for these)

on the environment (see section 1.4.3.3 for how it was implemented in the project).

1.4.2.4 Network structure affects decisions
Given the way energy is spread the way the network is structured heavily influences the decisions
that are taken, for example a module with more prerequisite symbols will usually gain more energy
than one with less. Moreover a competence that leads to multiple goals will gather more energy

than one that leads to only one way of achieving the same goal.

This might be considered a feature rather than a limitation but it does mean that network design

requires careful consideration.

6/51

Luca F. Beltrami Goal Based Agents in a Competitive Environmen

This project makes no attempt at solving this limitation because it is intrinsic in the energy spread

algorithm and changing that would probably lead to different semantics for the entire system.

1.4.2.5 Limited goal semantics
One of the limitations that was felt the most during the initial design phase was the limited goal
semantics: there is no way for a agent to prefer a certain goal to another and theoretically all the
goals are achievable. With this it is meant that there is a sequence of competences that leads to
achieving the goal, and once the goal is achieved it can be ignored (apart from making sure it isn't
undone). What is not considered are unachievable goals, goals that the agent strives to but never

completes, such as “collect as much money as possible”.

Turns out that with the non deterministic add and delete list semantics one such goal can be defined
as a symbol that is never true. This way the agent will carry out all the competences that lead to
satisfying the goal without ever succeeding and thus repeating the same actions (which, being

defined by indexing-functional aspects can in fact be quite different actions).

Solving the priority issue required a slight modification of the energy spread semantics. The energy
spread from goals is multiplied by a priority factor so that goals with a higher priority will spread

more energy.

1.4.2.6 Lack of memory
The final major limitation of the algorithm presented in the paper is that the agents lack memory of
their earlier actions and failures. This can lead to an agent repeatedly attempting the same course of
actions over and over without making progress. No attempt was made at solving this problem in
itself because it was felt that careful network design could reduce the risk of such an eventuality to

negligible levels.

1.4.3 Extensions to the model

To solve some of the problems mentioned earlier some extensions had to be made to the model.

1.4.3.1 Intelligence in competences
In the paper competences are defined as “mindless”. On the other hand while a competence is
executing the network is not being updated. This leads to problems when defining some
competences, for example a competence that makes the agent explore the environment would be

hard to implement as mindless. If the state of the exploration was to be saved as symbols in the

7/51

Luca F. Beltrami Goal Based Agents in a Competitive Environmen

network it would be at best impractical and at worst useless. Moreover the competence might have
to do a full exploration of the environment before completing which would definitely be
suboptimal. On the other hand if the state of the exploration is saved within the competence itself

the exploration could be interrupted at any point without problems.

A similar argument can be made for the implementation of a combat competence, the competence
itself should decide when to fight and when to break off from a combat that has become too

dangerous.

1.4.3.2 The selector pattern
To implement competences and symbols that are defined using indexing-functional aspects of the
world a limited amount of search must be implemented in each to identify the feature of the world
that best suits that aspect. Often this search is repeated in many different symbols and competences,
for example and agent that crosses a road might have the following competences:
- Go to nearest crossing

o PRECONDI TI ONS: none

o POSTCONDI TI ONS: at nearest crossing

Cross Road

o PRECONDI TI ONS: at nearest crossing
o POSTCONDI TI ONS: on ot her side of road

Here “Go to nearest crossing” and “at nearest crossing” both need a way to identify a specific

crossing out of the many crossings in the world, furthermore they have to agree.

This is what sparked the idea of Selectors. A Selector is a parameter the is given to symbols and
competences and acts as an index into the entities of the world. The project uses 3 selectors: one
selects the most precious entity known to the agent and is used by the competences that achieve the
goal of collecting money, another selects the entity that provides the most glory and is used by the

competences that achieve the goal of making a profit, the last selects an area to explore.

Since the selector is shared between all the symbols and competences that require that particular
index there is no possibility of disagreement about which entity suits that index best, moreover the

search is encapsulated thus reducing the effort of implementing the system.

1.4.4 Other approaches
Many other approaches have been taken in the development of agent architectures. One of the

simplest is to use a state machine. Under this approach states usually represent actions taken by the

8/51

Luca F. Beltrami Goal Based Agents in a Competitive Environmen

agent and transitions are external or internal events to which the agent responds. The appeal of this
approach lies in the simplicity of implementation and the intuitiveness of the Al behaviour. It is
trivial, by simply examining the state machine, to say how the agent will act, furthermore it is hard
to beat the performance of these agents since they perform. On the other hand this approach is
rather limited in the fact that it is incapable of reacting to events that are not programmed into it and
will always react the same way to each of those events. In a sense a state machine based agent is the
quintessential reactive agent, incapable of “consciously” working toward a goal, all the planning
has to be done by the implementer, the agent can only enact one of the pre built plans that was
chosen, by the implementer, during the agent implementation. Despite all these limitations

surprisingly good results can be obtained in fairly controlled environments [PIRANJAN9S]

Another approach to the design of agents is to describe the world as a number of possible states
with the actions available to the agent being the edges connecting them. The agent's view of the
future then takes on the shape of a tree (or a graph), from each node the possible actions lead to
different possible future states of the world. Events beyond the control of the agent can also be
represented by introducing “chance nodes”, nodes in the tree whose outgoing edges represent the
possible outcome of the external events (for example the result of a die throw). Chance nodes can
also represent the actions of an opponent in a competitive environment. Agents that represent the
world in this way usually find a complete solution to the problem before beginning execution, sing
algorithms such as A* and minmax (depending whether the search involves search nodes or not).
The main downside of these algorithms is the inability to deal with incomplete information about
the world and, in the case of A* external changes to the world state. Minmax can deal with changes
to the world state but does so in the rather brute force way of recomputing the optimal solution after
every action-chance event pair. Still many optimisations have been developed over the years and
variations on minmax are at the base of many of the most sophisticated agents such as the chess
master Deep Blue. Another issue with these algorithms is that they require a heuristic to judge how
“good” each possible future state is compared to the others. Producing a good heuristic is definitely
a non trivial problem. Finally the range of events that the agent can “understand” is limited by the

design of the nodes (both chance and choice). [RUSSELO3](chapter 5, 6)

Variations on this model use, instead of a single tree of possible states, a set of trees each
representing a possible world given the current limited information available to the agent. Selection
algorithms used on these agents often use “plans”, prebuilt sequences of actions that are known to,

given certain preconditions, to lead to certain results. The advantage of using plans is two fold,

9/51

Luca F. Beltrami Goal Based Agents in a Competitive Environmen

firstly a plan is a higher level construct than the actions the agent can take allowing the
implementers to ignore some of the details when examining or designing the agent behaviour,
secondly being a sequence of actions with known postconditions a plan can drastically reduce the
amount of search the agent requires to achieve its goals thus improving performance. One example

of this architecture is discussed by [RAO91] and [RAQO95]

A totally different approach is taken by planning agents. A planning agent uses logical propositions
to represent the state of the world. Actions the agent can take and its goals are described by more
logical propositions. The agent will then use inference rules to derive a sequence of actions that will
make the goals true given the current state. In some variations pre built sequences of actions might
be used to speed up the search. The attractiveness of this type of agents lies in the reusability of the
inference engine. All the application specific parts of the agent (state description, goals and action)
are in the inference engine language and can be changed without modifications to it. Another very
appealing feature of planning agents is the possibility for completely unexpected behaviours to
“emerge” from the inference engine. On the other hand the state of the agents and its future
evolution are very hard for a human to understand by simply examining the agents knowledge base.

[RUSSELO3](section 4)

This brief description does not cover all the types of agents developed many of which take some

aspects of each of the above and combine them in one or more layer of decision making.

1.4.5 Spreading Activation model vs other Al models
The Spreading Activation model as mentioned before sits between planning and reactive agents and
between classical (in 1989) programmed Al and connectionist approaches. The model takes some of

the advantages of each type without necessarily suffering from the same weaknesses.

From planning agents it gets the ability to decide on a course of actions and carry it through to
achieve a goal, without requiring all the processing to be done at once and losing the ability to react
to a changing environment. On the other hand unlike planning agents there are situations where a

Spreading activation agent gets stuck in a loop of ever failing actions.

From reactive agents it gets the ability to react to a changing environment but with very little risk of
loosing sight of its final goals. Like in a reactive agent selection of the next course of action is quick

and efficient.

From classical Al it gets competences which are understandable by humans, represent a specific

10/51

Luca F. Beltrami Goal Based Agents in a Competitive Environmen

capability and whose code (and by implication knowledge) can be shared among multiple agents
with ease, at the same time the Spreading Activation models keeps the capability to produce

emergent behaviour like a connectivist agent.
On the other hand the Spreading Activation model can't provide some things other models can.

A planning agent might be able to guarantee the ideal solution given a static environment, the
Spreading Activation agent will only guarantee a “good enough” solution. And while it can provide
some emergent behaviour it won't be on the scale of a fully connectivist agent nor it will be as

predictable as a classical one.

The Spreading Activation model could be considered an implementation of the BDI (belief, desire,
intent) model. State symbols in the network represent the agents beliefs about the world, the goals
represents the agent desires and the energy levels in the competences represent the agent intent. The
intent is not represented by the energy levels in a single competence but rather in overall spread of
energy over the entire network. A chain of competences with above average energy levels can be

thought of as the agent intending to eventually execute those actions.

11/51

Luca F. Beltrami Goal Based Agents in a Competitive Environmen

1.5 Project organisation

1.5.1 Time tabling

Project development proceeded according to the following time line:
Term 1 — Week 1 —3: Initial research and specifications
Term 1 — Week 4 —5: World framework design
Term 1 — Week 6 — 10: World framework implementation
Christmas Break: World framework debug and Al research
Term 2 — Week 1 —8: Al design and implementation
Term 2 — Week 9: Presentation
Easter Break: Report

During the early weeks of Term 2 several problems with the main development machine (requiring
a full reinstall of the system) caused significant delays from the original time table presented in the

specifications in Term 1. These delays required the original plans to be changed slightly.

The time left wouldn't allow for a proper implementation of 2 types of agents as planned originally,
so the Spreading Activation model was picked as the one to fully implement and evaluate. The
reason for the choice was that the Spreading Activation Model was known to work even if many
implementation details were unclear. On the other hand the partial planning design was going to be
built from scratch using a mix of techniques presented in various papers and there was a major risk

of failing to produce a working agent.

1.5.2 Why C++
The choice of using C++ to implement this project is the result of many factors. First and foremost I
wanted to demonstrate my ability to use the language. While Java is used in many companies C and

C++ are still the workhorses of the industry.

Secondly many of the features of the language are appealing from a software design point of view:
overloaded operators and templates for example are two features that are not used much in the
project but in the few places where they are used they are invaluable. Another feature of C++ that

was greatly appreciated was the lack of a garbage collector. It might sound strange a garbage

12/51

Luca F. Beltrami Goal Based Agents in a Competitive Environmen

collector removes deterministic destruction of objects which is a key point of many idioms used in
the project. Plus using smart pointers ensures that objects with complex lifetimes and ownership are

destroyed correctly.

A third reason for choosing C++ was the abundance of libraries that could be used. Java has an
excellent library but it's harder to find 3™ party libraries to cover what the official library doesn't

cover.

1.5.3 Development methodology and tools
Development didn't follow any specific methodology. About half of the design work was done
before begging implementation loosely following the waterfall model, in this phase most of the high
level interfaces were set. Once implementation begun the original design was heavily refractored to
deal with unforeseen circumstances and often with details that should have been considered but

were missed due to inexperience.

Tight implementation debugging cycles were run to check all sub modules before checking a full
modules. This much reduced the number of “wild bug hunts” across most the code base but sadly
didn't remove them all. Again many of these were due to inexperience in detecting hints of where a

bug actually lay and concentrating the search on other sections of the code.

Most of the coding was done using various combinations of Kate and Kdevelop, whose excellent

syntax highlighting was very much appreciated even though code completion was mostly useless.

gcc was used to compile the code and apart from one strange bug with const iterators was perfectly

suited to the task.

Finally gdb and Valgrind were used for debugging. While gdb is an excellent debugger Vlagrind

was extremely useful in hunting segmentation faults that could occur at any point of the main loop.

Cvs was used to provide access to the code from any machine and also as a backup mechanisms.
Late in the project svn was used in place of cvs due to a better handling of binary files so that the

report could be shared efficiently too.

13/51

Luca F. Beltrami Goal Based Agents in a Competitive Environmen

1.6 World framework

1.6.1 General design considerations

1.6.1.1 World framework competences
The world framework is responsible for running the virtual world the agents live in. Where the
world ends and where the agent begins is not something that is obvious. For example the agent
might include the knowledge of how to move itself in the world and how to perceive other entities

or it might just be limited to making decisions and giving orders to an entity that's part of the world.
I decided to follow the latter route because it allows for a cleaner interface between world and Al

Thus the world framework needs to represent the entities that exist in the world, know where they

are, be able to say what they perceive (if they have senses) and enforce the rules of physics.

Everything that exists in the world is represented by an entity. To allow more complex entities
(such as those representing an agent) to maintain the necessary state and implement the needed
operations without forcing simpler entities to do so as well (and avoid the performance costs) an
“extension” mechanism was defined. In short a basic entity would only store its position and
orientation in the world. A more complex entity would also possess extensions that allowed it to
carry out other functions such as being rendered, participating in combat, interface with an agent,

etc.

Entities are stored in a tree structure sorted by position, so the world framework can quickly retrieve
entities based on their location. Entities are also uniquely identified by an ID string and can be

retrieved using that too.

Perceptions are dealt with by one or more Perception Managers, each encapsulating a sense.
Perception Managers are not responsible for generating percepts, each entity must generate the
percepts about itself (after all only the entity itself knows how it looks and sounds), their only task

is to deliver the percepts from the generating entity to all the entities that are perceiving it.

The final part of the framework is the path finding logic. The reasons why path finding is included
in the world framework and not in the Al are fairly simple: firstly there's already a very good and
well known path finding algorithm, A*, and the way it works does not lend itself to a tighter
integration with Maes' Spreading Activation agents; secondly moving path finding into the Al

would require either much data duplication or exposing the inner workings of the world framework

14/51

Luca F. Beltrami Goal Based Agents in a Competitive Environmen

to the agents.

1.6.1.2 Non quantized world
One of the objectives of the project was to make both space and time as continuous as possible
within the simulation. Thus all positions are stored as floating point numbers and can assume any
value (within the limitations of the hardware). The only part of the world framework that is

quantised is the path finding logic since A* works best (must work?) on a quantized world.

This decision proved to be a double edged blade: on the one hand removing quantisation causes all
manner of problems, especially on the timing side (see the next section); on the other hand it does
also remove a lot of annoying artefacts caused by quantisation, such as things moving faster when

moving diagonally, or being unable to do so.

1.6.1.3 Timing

There are 2 main ways to make time flow in a simulation:

1) simulation time flows independently of real time, sometimes faster, sometimes slower.

Real Time
—p—p—p—p—p—p——Pp—— P

Simulation time - P

Drawing 2: Each arrow represents one unit of time

2) Simulation time flows in sync with real time, maybe faster or slower but always with the
same ratio between speeds.

Real Time
—p————————p——p

Simulation time - . >

Drawing 3: Each arrow represents a unit of time
The choice of which method to use was heavily influenced by the desire to play the output of the

project in real time and as it was being computed “on the fly”.

The first method is the more straight forward to implement (compute current state, increment
simulation time, compute current state, ...) but, to achieve the desired result, requires the simulation
to guarantee a certain rate of state computation. At this stage of the project I had no idea how long

the state computations would take and how much the time taken would vary.

The latter method is much more better suited to producing real time output on the fly but has some

interesting implementation issues.

15/51

Luca F. Beltrami Goal Based Agents in a Competitive Environmen

In the first method each iteration of the simulation loop knows exactly how long it will last in
simulation time, in a way it can look a bit in the future of the simulation and say “I will end at this
point in time”. By contrast the second method cannot do this. Since the time take to compute the
new state is unknown, the ending time of the iteration in real time is unknown (this is true for both
methods) and simulation time is anchored to real time so the ending time of the iteration s

unknown, we've lost the ability to “peek” into the future.

The final result is that under the first method each iteration can compute the new state in the

straight forward manner:

1) get current simulation tinme // easy, a fixed increment on the previous tine
2) deliver perceptions to each entity
3) let the agents decide what to do

4) execute actions // we know exactly how much tinme entities have to execute
their actions before the next iterations so it is easy

On the other hand the second method needs to do something like this:

1) get current simulation tine //need to get new systemtine

2) execute actions //note that this is the step 4 fromthe previous iteration
under the first nmethod. It has to be done now otherwise it is unknown
how | ong entities had to execute their actions

3) deliver perceptions to each entity

4) let the agents deci de what to do
This sequence is counter intuitive, at first sight it looks like entities act before deciding what to do,
in reality the 2 methods are exactly equivalent with just a swap between the reading of the current

time and executing of actions.

Tick beginsGet current time Tick beginsGet current time

Update State And Agents \ Execute Actions

Update State And Agents
Drawing 5: Updating method 2

Execute Actions
Drawing 4: Updating method 1

The other important issue to consider was how to handle race conditions between entities trying to

interact with other entities. For example if 2 entities were trying to pick up the same entity at the

16/51

Luca F. Beltrami Goal Based Agents in a Competitive Environmen
same time which one should succeed?

Since there is no true concurrency in the world framework there is no risk of 2 entities modifying
another entity at the same time, the only issue is to guarantee a fair environment to the agents,

without some entities always getting priority over other entities.

The simplest way to approach the problem is not to do anything counting on the non quantised
world to provide a “random” ordering of the entities attempting the same action. This, coupled with

very short iterations, would make race conditions a rare occurrence and a negligible problem.

A slightly more complex solution is to randomise the order in which entities update their state . This

solution can cope fairly with frequent race conditions.

The most complex and most flexible solution is to implement a scheme where all actions for a given
iteration are first “declared” by the entities, then potential conflicts are resolved (possibly using
different algorithms for each kind of conflict) and finally all actions are carried out. This system is

not only fair but allows to customise the way each conflict is resolved.

In the end the first method of “not really doing anything about it” was chosen. The reason was that
at that point there was no evidence the system would need a more complex solution, which could
always be implemented later if necessary, and it would free time to move on the more important

parts of the project.

1.6.2 World

1.6.2.1 Entity storage
Since different parts of the world framework would need to access entities in different ways based

on different information so different data structures are used to store entities.

Much of the world framework functionality needs to access entities based on their position in space.
The data structure most suited to for this task was found to be a variation on the octree theme. An
octree is a tree structure where the world (generally a cube) is recursively partitioned in 8 parts each
becoming the root of a sub tree. The main downside to a basic octree is that it has 8”n nodes at each
level of subdivision. One solution to this problem is to, instead of subdividing to a fixed depth,
subdivide until there is only a certain number of entities in each node. This solution works well and
is only moderately complex but for the world framework there was a better solution (in my

opinion).

17/51

Luca F. Beltrami Goal Based Agents in a Competitive Environmen

Generally octree are used to store spaces that are roughly the same size along all 3 axis while the
worlds represented in this project where going to be mostly 2 dimensional; and equal number of
subdivisions on each axis would lead to nodes the were extremely thin in one dimension while still

too large in the other 2.

The tree implemented in the project can subdivide each node in 1, 2 or 3 dimensions depending on
the shape of the node. The implementation is fairly trivial and gives less nodes than a standard

octree.

Using a quadtree (a structure similar to an octree that subdivides a plane in 4) could have been
another solution but would have affected performance in case more 3 dimensional worlds were

used, without much simplification of the code.

Some other parts of the system might require to identify a specific entity, without knowing its
location. To provide this data efficiently all entities are inserted in map that associates a string (the

entity's id) each entity allowing fast retrieval of entities by name.

1.6.2.2 Path finding
For path finding the straightforward solution of using the A* algorithm was chosen. A separate data
structure is used for the pathing computations since A* requires a quantised world to work in. The
structure is a simple 3 dimensional array of “pathing cells”. Each cell stores 2 bits of information:
the coordinates of its centre, used for all the cost calculations and as the point entities move through
when going through that cell, and whether entities can move through the cell or not. To reduce the
task of keeping the pathing map up to date only some entities are considered to block pathing
depending on a value attached to every entity, whenever one of the path blocking entities is move
the pathing map is rebuilt from scratch. In the final implementation only entities representing walls
block pathing. Another reason why most entities do not block pathing is to completely avoid

collision issues between moving entities.

1.6.2.3 Perceptions
Perceptions are handled principally by Perception Managers. Perception Mangers are modelled after
the Observer pattern: entities subscribe to a Perception Manager for each sense they have (only
sight is implemented currently) and the manager provides them with all the Percepts they need for
that sense. The Perception Manager does not generate the Percepts on its own, every entity provides

it with the percepts associated with it. The reasoning behind this design is as follows:

18/51

Luca F. Beltrami Goal Based Agents in a Competitive Environmen

Perception should be a passive activity for entities, at any one time entities should have the most
updated percepts available (in fact this not true in the current implementation but that is intentional

to hide the fact that entities are updated sequentially).

By encapsulating the mechanisms of perceiving in Perception Managers it is very easy to modify
what senses an entity has access to at runtime. Moreover the manager could carry out optimisations
on the way it picks up and delivers perceptions over multiple entities. Neither of these points is used

in the current implementation.

Finally a perception manager has no way of knowing exactly how to build percepts about entities so

each entity provides it with all the percept it should generate.

Percepts are discussed later in the Al interface section.

1.6.3 Entities

An entity is anything that exists in the world, whether it is movable or static, visible or invisible. All
entities have a name, a position and an orientation. The name of the entity is unique and is used to

reference the entity directly.

Some entities need more functionality, which is provided by extensions. The extensions

implemented in the project are:

Combat: the entity is capable of participating in combat

- Item: the entity is an item that can be picked up, carried around and dropped
Handler: the entity is capable of manipulating items

- Movable: the entity can move or be moved around
Renderable: the entity can be rendered

- Sensitive: the entity has senses and can perceive things
Smart: the entity supports an agent

- Tangible: the entity can be perceived (and thus has to provide percepts to

PerceptionManagers)

Every entity has a number of methods of the form getExtX() where X is the name of the extension.
These methods return an appropriate extension object that implements the interface of the

extension, for example the Renderable extension implements the render() method used to display an

19/51

Luca F. Beltrami Goal Based Agents in a Competitive Environmen

entity. If an entity does not support a given extension the corresponding get method will return null.

This property is used extensively to test if a given entity support certain extensions.

The extension classes in general only provide basic implementations of their interface (sometimes
they only declare their interface) and keep only the state that is strictly part of the extensions. This
is because they are not meant to be used directly but as parent classes of the actual extension objects

used in the system. There are 2 ways they could be extended:

The first is to make “runtime” extensions. From each extension base class a full implementation of
the extension is derived. Every entity contains all the extension objects it needs and puts them in
contact when they need to (for example the Smart extension needs the percepts from the Sensitive

extension).

The second option, “compile time” extensions, is that every entity inherits from both the base entity
and the extensions it wishes to support and provides a full implementation of all of them. This way
is less elegant than the first but is simpler since extensions can just share the variable that are
needed by more than one. The project uses this method since only a small number of entity types

where needed.

1.6.4 Al interface

1.6.4.1 Percepts
Percepts are object that describe a single item of sensory input. In the current implementation every
entity provides 1 percept per iteration (theoretically it would be 1 per sense but only sight is
implemented). Every percept is identified by an id and every percept from the same entity for the
same sense uses the same id making it easy for the perceivers to determine if they are sensing the

same thing.

Percepts also carry information about what sense they represent and at what time they begun and at
what time they ended (the time information is not well implemented in the project but it wasn't of

much use).

Percepts in theory should store all the information about the generating entity that can be accessed
by using a given sense. In the current implementation they only store a reference to the parent entity
and the perceivers use that to access further information. This was done mostly to simplify this part

of the program even though it does break the Agent / World framework interface

20/51

Luca F. Beltrami Goal Based Agents in a Competitive Environmen

1.6.4.2 Orders
Orders are the other half of the interface between Al and world framework. Orders encapsulate a
high level action such as walking or picking up something, hiding the implementation details of the

framework and allowing the agents to work with meaningful actions.
The currently implemented orders are:

- Attack: makes the entity attack another nearby entity. Both entities must implement the

Combat extension.

« Drop: makes the entity drop an item it is carrying. The executing entity must implement the
Handler extension and the target entity must implement the Item extension. While

implemented it is never used and no entity actually keeps track of what it is carrying.

Pick Up: makes the entity pick up a nearby item. The executing entity must implement the

Handler extension and the target entity must implement the Item extension.

- Walk: makes the entity move in a straight line to a target location. The executing entity must

implement the Movable extension.

Some of the orders could have been extended to be even more “high level” than they are: instead of
the Attack order there could be a Fight order that handles the entire fight and the Walk order could
handle path finding. On the other hand it was felt that doing so would move too many of the
decision that should be handled by the Al into the world framework. The current orders are

meaningful but atomic actions.

Unlike the percept interface the order interface is never broken. Using the percept interface as first
envisioned turned out to bee too cumbersome under the current design while the orders worked very

well fro their intended purpose.

1.6.5 Combat

While the combat system was just a minor part of the project a few words on how it works are

necessary to fully understand the workings of the project.

Entities that engage in combat can perform only one action, Attack, implemented in the order
Attack. How skilled an entity is at attacking is represented by the attack score. Whenever an entity

is attacked it automatically defends itself, how well it can do so is represented by the defence score.

When an entity attacks it generates a random integer between 1 and its attack score, the defending

21/51

Luca F. Beltrami Goal Based Agents in a Competitive Environmen

entity generates a random integer between 1 and its defence score. The ration of the 2 random

numbers is the amount of damage the defending entity takes.

The amount of damage an entity can take is represented by its health score. If the health score drops

to 0 the entity dies. Every entity regenerates health over time.

1.6.6 Output

The output module of the world framework is a very simple 2D OpenGl based renderer. The design
of the interface between output module and the rest of the framework theoretically allows replacing
this renderer with another more or less sophisticated one with no change to the code outside the

output module itself.

The module works using models each of which is can render itself to the screen. A renderable entity
might have one or more models associated with it and decides which to render at any point. The
same model can be shared across multiple entities and receives entity dependent information, such

as position and orientation, from each entity at the time of rendering.

Entities request models by name from a globally known model factory that creates the model object
and returns it to the entity. How the model factory constructs the model object is not the entity
concern. In the current implementation there is a very rudimentary file format for describing

models.

22/51

Luca F. Beltrami Goal Based Agents in a Competitive Environmen

1.7 Al implementation

1.7.1 General design consideration
The interface between world framework and agent consists in the world framework requesting the
agent to “update” itself (take into account the changes to the environment and decide on the future
course of actions) every tick. The agent gather information about the world by calling the
getAllPercepts() method (part of the ExtensionSmart interface). This method returns a list of all the
percepts the entity supporting the agent experienced during the last tick. After making a decision the
agent will “communicate” it to the supporting entity by calling the setNextOrder() method (also part

of the ExtensionSmart interface).
This interface design means that the agent has a number of crucial tasks to perform:
Firstly it must (obviously) be able to decide on a proper course of actions.

Secondly it must be able to remember past percepts so that things not in the immediate sensory

range of the entity are not ignored.

Finally it must be able to translate percepts into symbols that are meaningful to the Spreading

Activation Network.

All these tasks can only be carried out when the agent is asked to update itself, the agent is

“inactive” the rest of the time.

Given the way the Spreading Activation model works the agent may carry out all or only a few of
the above tasks on each update. On every update the agent must process the new percepts and
update its memory to avoid missing out anything of importance. Making decisions, in this case by
running the enough iterations of the energy spreading algorithm for the network to pick a
competence, only occurs when no competence is running. As a consequence it is pointless to update

symbols and selectors except when the network is about to be run.

The agent must also consider situation when the last order given to an entity has been completed but
the competence is not completed yet, in this case the agent should only pass a new order to the

entity without running the decision making algorithm again.

The agent memory can be implemented as a set of percepts using the percept id as the key. This
gives a fairly efficient check for duplicates. Using a set indexed by a hash table might have been
better but it is not a standard part of the STL (C++ standard container library) and would have

23/51

Luca F. Beltrami Goal Based Agents in a Competitive Environmen

required implementing a hash function.

1.7.2 Graph vs set

1.7.2.1 Set pros and cons
In the paper, when presenting the expressions the describe how energy spreads between
competences and symbols according to the Spreading Activation model, a number of sets and set
operators are used. For example the expression that defines the energy input in a competence due to

the active prerequisite state symbols is:

X

inputFromState (x ,t)= Y, PHI 1 : 1 where jeS(t)nc
7 M ey

Where PHI is the amount of energy injected by the state per true state symbol, M(j) is the set of of
competences for which j is a prerequisite, ¢ of x is the set of prerequisite symbols of x and S(t) is

the set of active symbols at time t.

One approach to implementing the Spreading Activation model would be to directly translate these

set expressions into code.

The advantage of doing so is that it should be quite simple to determine whether the implementation
is correct or not. Also there should be very little redundancy in the stored data: a set of symbols, a
set of competences, each competence holds some references (pointers) to some symbols, all the
other information is generated on the fly, so to say. On the other hand many derived sets need to be
allocated and deallocated during each processing iteration such as M(j) in the example above, not

only that they need to be created from very scattered information.

A quick performance analysis is needed before a comparison with other ways of implementing the

model can be made.

The standard c++ library makes these guarantees on the performance of set operations:
- insertion is O(log n)
« deletion is O(1)
- find is O(log n)

- intersection is O(n)

24/51

Luca F. Beltrami Goal Based Agents in a Competitive Environmen

One very important simplifying assumption is made for this analysis: the size of add, delete and
prerequisite lists is fairly similar for all competences and grows linearly with the size of the
network. Also it shall be assumed that the number of competences in the network and the number of

symbols are in a fairly constant ratio (both are in O(n) to the size of the network).

1 will indicate the number of competences in the system, j will indicate the number of symbols in

the system. Given the above assumptions anything in O(i) or O(j) is in O(n).
For every update cycle several expressions need to be computed:
input_from_state(x,t)

input_from_goals(x,t)

taken away by protected goals(x,t)

need to be evaluated for every competence. Each expression will need to allocate a set in O(j) and
evaluate a number of sub expressions (the number of sub expression is in O(j)) each of which
requires the allocation of another set in O(i). Overall the evaluation of these 3 expressions is in
O(n"3).

spread fw(x,y,t)

spread_bw(x,y,t)

takes away(x,y,t)

need to be computed for every competence pair. spread fw(x,y,t) and spread bw(x,y,t) taken

together allocate at least 1 set for every x in O(j). takes_away(Xx,y,t) also allocates at least 2 sets for

every evaluation (in O(n) time).

Overall the spread * expressions will have to evaluate a number of sub expressions in O(i"2%j),
with each sub expression being of similar complexity to the ones from the input_* expressions. The

overall complexity is thus O(n"4).
takes away(x,y,t) is again similar, the overall complexity is (n"4)

Thus the complexity of the entire state update is in O(n"4) but with quite large hidden constants due
to the many set allocations and repetitions of similar operations. It is also quite likely that the size

of the add, delete and prerequisite lists will grow faster than O(n).

25/51

Luca F. Beltrami Goal Based Agents in a Competitive Environmen

1.7.2.2 Graph pros and cons
Another approach to implementing the Spreading Activation model is to use a graph structure. After

all the model is supposed to represent a network of competences and symbols.

The graph approach requires some modifications to the way all the expressions are evaluated. For
example instead of evaluating input_from_state(x,t) for every competence, each active symbol will

inject a certain amount of energy in each of the child competences.

Overall this approach probably requires more memory to be stored (depending on how the graph is
implemented) but many of the sets that had to be computed on the fly for the set approach exist

explicitly 1in the representation. For example 1S just the outgoing edges from symbol j.
plicitly in the rep ion. F ple M(j) is just the outgoing edges fi ymbol

Another advantage to the graph approach is that each of the 6 expressions shown in the paper is

broken up in multiple parts each residing in its own method making it easier to follow each one.
Finally the graph method feels more object oriented than the set method.
Now to analyse the complexity of the graph approach

Assuming the graph is built as a directed network of competences and symbols where competences
are children of symbols in their prerequisite list and parent of the symbols in their add and delete

lists.

Assuming as with the set approach that size of the add, delete and prerequisite lists is proportional

to the size of the network.
Each node in the graph has a spreadEnergy() function.

For state symbol nodes this function spreads the correct amount of energy to every child node in

O(n).

For goal symbols it combines parts of input_from_goals(x,t) and
taken away by protected goals(x,t) adding energy to competences that might activate the symbol

and removing from those that might disable it. Again it is in O(n).

For competences the function is more complex, as it integrates the spread * expressions and
take away(x,y,z) which are already the most complex of the expressions and is in O(n"2)

complexity.

spreadEnergy() is called once per every node in the graph giving an overall complexity of O(n"3).

The hidden multipliers are fairly large, like for the set approach but since there are no memory

26/51

Luca F. Beltrami Goal Based Agents in a Competitive Environmen
allocations involved they should be smaller.

It should also be pointed out that the set based approach could be optimised quite a bit if the
expressions in the paper were not followed literally but broken up like they have been in this

approach.

Ultimately the graph based approach was not chosen for its better performance but because it was

found much easier to code and debug.

1.7.2.3 Graph implementation
The graph objects implemented to support the graph implementation of the model take a fairly
naive approach to the problem. A graph is a list of nodes. A node is a list of edges and holds a

reference to a “content” object.

Since the lists are not sorted adding a node to the graph and adding an edge to a node are both in
O(1). Adding an edge to the graph is in O(n) where n is the number of nodes. Removing an edge is

also in O(n + m) and so is removing a node (m is the average number of edges in a node).

Edges store 3 pieces of data: a pointer to the parent node, a pointer to the child node and a boolean

label that indicates whether they are enabling or disabling nodes.

Each node stores both incoming and outgoing edges and a pointer to a “content” object. The
“content” is either a Symbol object or a Competence object and provides the spreadEnergy()
method. The choice of splitting nodes in node and content was to allow debugging of the graph
before implementing the Symbol and Competence classes. It could have been done by using

inheritance but composition seemed a cleaner solution.

1.7.3 The StateSymbol class
In addition to implementing the spreadEnergy() function the StateSymbol class must know when it

is enabled or disabled depending on the memory of the agent and its current percepts.
The subclasses of StateSymbol, most of which are parametrised by a Selector, are:
StateSymbolAt: true if the agent is at a specific location.

StateSymbolAtSelect: true is the agent is at the location determined by the selector
StateSymbolDying: true if the agent is below half health

StateSymbolNotSafe: true if the agent can perceive entities that can fight

27/51

Luca F. Beltrami Goal Based Agents in a Competitive Environmen

StateSymbolKnowSelect: true if the agent knows an entity that can be selected by the Selector

parameter
StateSymbolDontKnowSelect: the complement of StateSymbolKnowSelect

StateSymbol AtltemSelect: true if the agent is near the entity chosen by the Selector parameter and

the entity is an item

StateSymbolAtMonsterSelect: true if the agent is near the entity chosen by the Selector parameter

and the entity is capable of combat.

Each of these subclasses implements implements a custom update() function that is used to

determine the truth value of the symbol.

1.7.4 The GoalSymbol class
The GoalSymbol class is very similar to the StateSymbol class. The main difference is the
spreadEnergy() method. Like StateSymbol objects each GoalSymbol object must be able to

determine its truth value.
The subclasses of GoalSymbol are:
GoalSymbolAny: a generic unattainable goal

GoalSymbolSelect: parametrised by a Selector, this goal is a permanent goal that cannot be
achieved. It is also parametrised by a priority value which indicates how important the goal is to the
agent. The energy input into the system by the goal is equal to the normal energy input for a goal

times the goal priority times the value of the currently selected goal entity.

GoalSymbolAlive: probably badly named, since this goal like GoalSymbolSelect cannot be
achieved and yet agents are “alive”. It probably should have been named GoalSymbolHealthy as it
comes into play when StateSymbolDying is true (see the Agent class section for a full description

of the agent)

All the goals in the project are permanent goals that can never be attained by the agent (they never

evaluate true) so that the agent will forever try to accomplish them.

1.7.5 The CompetenceTemplate class
This class is what is usually referred to as the competence class. It is called CompetenceTemplate

because instances of the class are the actual competences. In addition to implementating its own

28/51

Luca F. Beltrami Goal Based Agents in a Competitive Environmen

version of spreadEnergy() CompetenceTemplate must be able to determine whether it is executable

or not (by examining its prerequisite set) and be able to actually execute.

Most competences when executing will pass an order to the entity supporting the agent, wait for it
to finish executing, pass another order and so on until they have passed all the orders needed to

carry out the task the competence represents.

Once all the orders are carried out all the symbols in the competence add list should be active and
all the symbols in the competence delete list should be inactive but, since the add list and delete list
only indicate the possibility of those symbols activating or deactivating, it might not be so. For
example CompetenceFightSelect has StateSymbolDying in its add list but it won't be necessarily
activated after every fight.

Moreover every competence might abort during execution if completing the competence is no
longer possible or the best course of action. Again taking CompetenceFightSelect as an example the

competence might abort if the agent is losing the fight.
The competences implemented in the project are:
CompetenceExplore: moves the agent to a random location in the world.

CompetenceFightSelect: parametrised by a selector, fights the target picked by it. Will abort the
fight if the agent is loosing.

CompetenceMoveSelect: parametrised by a selector, moves to the location picked by it.

CompetencePickUpSelect: parametrised by a selector, picks up the item selected by it.

1.7.5.1 Competences vs orders
There is no 1 to 1 correspondence between orders and competences, an order is too small for the
agent to use directly in the network and a since competences actually host parts of the agent they

cannot be made into orders.

For example if the Attack order was a competence most of the time there would be no change to the
state of the network after it was executed, except that the attack competence would have no more
energy making it an unlikely candidate for being picked again. The agent would most likely
wander off to do something else. The end result would look like agents where severely suffering
from attention deficit disorder. On the other hand making a fight order would move too many of the

choices that should be handled by the agent to the world framework.

29/51

Luca F. Beltrami Goal Based Agents in a Competitive Environmen

As it is with the current design each competence can host parts of the agent that would be difficult

to describe in the spreading activation network without having to relinquish control to an external

party.

1.7.6 The selector class
Selectors implement most of the “second layer of intelligence” in the system. Some of it is part of
the competences but selectors implement the most important parts. The a Selector object as it;s
name implies selects the best entity or position to fulfil a certain goal. In the current implementation

3 Selectors are implemented: SelectBestGlory, SelectBestGreed and SelectExplore.

SelectExplore ideally would keep track of the areas the agent already explored and make it explore

new areas, in fact is selects random locations in the world.

SelectBestGreed and SelectBestGlory select the best entity to fight or pick up for glory or greed.
Each considers a various factors when making the choice including the value of the entities and how
dangerous they are to fight and produces a weighted value for the selected entity to be used by the

goal objects.

1.7.7 The Agent class

1.7.7.1 Responsibilities and operations
The Agent class is technically still part of the world framework and defines the interface between it
and agents. Actual agents are implemented in a subclass of Agent. The only agent type
implemented in the project SpreadingAgent implements all the remaining functionality needed for a

full implementation of the spreading Activation model.

Every agent receives a pointer to the entity that supports it upon creation and implements an

update() function that is used to update the state of the agent each iteration.
SpreadingAgent's update() method carries out a large number of task.

Firstly it processes the current percepts to determine if the agent discovered anything new and if
that is the case stores it into the agent's memory. Next it also check if anything the agent knows
about is no longer there. This second operation is extremely important without it an agent that
decided to pick up something was the best course of action would forever try to pick it up after it
was gone (the Spreading Activation Network has no memory to determine if the action it is

attempting now was attempted earlier and whether it failed or not).

30/51

Luca F. Beltrami Goal Based Agents in a Competitive Environmen

Processing percepts to see if something new has been discovered is trivial, for each percept of
interest the agent stores it in its memory. If another percept with the same id was already there it is

overwritten.

Updating memory to “forget” things that are no longer there is more complex. For every percept in
memory the agent has to check if it is within its sensory range. If it is the agent checks if it also
appears in the current percepts, if it doesn't the entity associated with it is no longer there and thus
the percept is removed from memory. While not the most sophisticated approach to the problem,

this solution does solve the problem quite simply and effectively.

After processing the current percepts the agent checks if an order is in mid execution, if so update()
ends as the agent waits for the entity to be done executing it. If there are no orders on the entity but
a competence is executing, the competence is told to deliver the next order to the entity and update()

ends.

If there are no orders and no competences executing then the agent needs to pick the next action.

First all the selectors are updated so they all select the best target from the agent's memory.

Next all the symbols (state and goal) in the network are updated to they reflect the current state of

the agent and the world.

Finally energy is spread around the network until one competence has enough energy to be picked.

When one is chosen it activated and the first order from it is passed to the entity.

The second job of the SpreadingAgent class is to provide a nice interface to for creating the

network. The class provides a number of methods to insert and remove nodes and create edges:

insert() takes either a competence smart pointer, a symbol smart pointer or one of each and a
boolean. The first 2 versions of the function insert the competence or symbol into the graph (after

creating a node to host it), the latter creates an edge between 2 previously inserted nodes.

remove() takes either a competence of a symbol smart pointer and removes it from the graph

together with the corresponding node and associated edges.

Note that all these functions work with smart pointers not regular pointers to simplify memory
management. Smart pointers are used in many other areas of the project but this is one of the few

where they are part of the interface.

The final job of SpreadingAgent or of a subclass is to create the network when an object is

instanced. The SpreadingAgent constructor creates the network used by the agents in the project, a

31/51

Luca F. Beltrami Goal Based Agents in a Competitive Environmen
subclass of SpreadingAgent could implement a completely different network.

The network is created simply by creating all the required nodes and linking them using the above

functions, no digging in the internals of the class is needed.

32/51

Luca F. Beltrami Goal Based Agents in a Competitive Environmen

1.8 The Actor class
The actor class is not part of the world framework or of the Al system, rather it uses both to
implement a rational agent and the entity supporting it. The actor class is a world framework entity
implementing all the extensions with the exception of Extensionltem. Thus an Actor object can

move, engage in combat, interact with other items, perceive and be perceived and support an agent.

The agents that are attached to Actor objects are of the class AgentActor, a subclass of
SpreadingAgent that upon construction initialises itself with the Spreading Activation network it

uscs.

1.8.1 Expected behaviour
The desired behaviour of these agents was to explore the world until they encounter something of
interest (a treasure or a monster worth glory or money). At that point the agent should evaluate the
risk of attempting to claim the reward from the encounter. In the case of items there is no risk in
doing so but in the case of monsters the task might be quite dangerous or outright impossible, of
course the more tempting the reward the more risk the agent should be prepared to take. If the
reward is deemed worthy of the danger it should be claimed otherwise the agent should resume

exploring in the hope of encountering better prey.

Explore

v

Found “resource”

“A

Yes

Exploit “resource”
p. >

In addition the agent should be parametrise by its lust for gold and glory. Some AgentActor objects

33/51

Luca F. Beltrami Goal Based Agents in a Competitive Environmen

will only desire gold, other only glory and every shade in between should be possible.

1.8.2 Spreading Activation network
The final network design for AgentActor is the following:

GoalSelect
Greed

GoalSelect
Glory

GoalAlive

The network is split into 2 paths one that achieves the goal of glory and one that achieves the goal
of greed. Both paths have exactly the same structure and use the same competences parametrised by

a different selector.

34/51

Luca F. Beltrami Goal Based Agents in a Competitive Environmen

35/51

Luca F. Beltrami Goal Based Agents in a Competitive Environmen

1.9 Evaluation

1.9.1 Correctness
To test whether the model was implemented correctly the robot example from Maes' original paper
was implemented. For simplicity the agent was implemented with a map containing all the symbols
in the world and their value (an integer representing their number of occurrences in S(t)). The
StateSymbol and GoalSymbol objects were implemented as proxies to the values in the map.

Competences upon activation would simply modify the map according to their add and delete lists.
The code for these classes is in the AgentTests.h and EntityTest.h files.

The only problem in implementing the tests was determining the values of the parameters of the
network since they are not given. 6, @, y and m where determined by inspection of the output

reproduced in the paper. & was not used in the example and was guessed.

When run the agent executed exactly as on the paper, following the same sequence of actions and

taking the same number of iterations to complete its task (see demo 6 robot painter).

1.9.2 Performance

1.9.2.1 Al
From the performance point of view the project has been a success. Demo 2 (demo_2 massive) is
designed to show this. The demo creates 50 agents in the same world as demo 1 and there is no
noticeable slowdown (on the development machine: P4 3.2 GHz, 2 GB ram). Probably the main
reason for this is that due to the way the agents are designed “thinking” time is quite rare. Most of
the time agents will be mindlessly executing the next order which might take several hundred ticks,

thus the chance of more than a handful of agents “thinking” at the same time is quite low.

1.9.2.2 World framework
The performance of the world framework on the other hand is quite abysmal. Specifically the path
finding algorithm can take a couple of seconds or more to plot a course. This probably due to the
large number of allocations that are carried out when computing the path. On the other hand
replacing the path finding routines would take very little work, since they are encapsulated in their

own object.

36/51

Luca F. Beltrami Goal Based Agents in a Competitive Environmen

1.9.3 “Smartness”
The objective of the actor class was to produce a rational agent that would search the world for
glory and or gold and try to collect as much as possible of one, the other or both depending on its
priorities. The first demo included with the project (demo 1 general, see Appendix C for details)
shows 3 such agents in a world. In the demo the multicoloured squares represent the agents, the red
diamonds represent monsters and the yellow diamonds represent piles of treasure. All monsters and

treasures are worth both gold and glory and the agents are interested in both.

When running the demo some minor glitches in the Al behaviour can be noticed: sometimes the
agent will walk up to a treasure and walk off without first picking it up. This is likely to be due to
interference between the glory and greed paths in the network, both might have accumulated
significant amounts of energy for different target entities and the agent will oscillate between which
to pick. Solving the problem would be simple if a symbol other than a goal could inhibit a
competence but under the current semantics and network design there is no obvious solution apart

from further tweaks to the Al parameters.

After a while the agents will start moving around randomly without collecting the last few treasures
and monsters, this is due to the fact that those entities are not within accessible pathing cells and are

therefore ignored.

Demo 3 (demo 3 selector issues) shows what a bad Al parameters can cause. The 2 agents for
ever oscillate between 2 treasures, one with a high gold value and one with a high glory value. In
this situation the energy input from the goals is too low compared with the energy input from the

state.

Demo 4 (demo_4 priorities) demonstrates (not too clearly) how the agents will prioritise goals.
There are 2 agents in the world and eight treasures in two groups of four, the top row of treasures
has a high glory value and the bottom row has a high gold value. The agent on the left prefers glory
to gold and the agent on the right prefers gold to glory. Each agent will first collect the treasures it

prefers before collecting the other ones.

Finally demo 5 (demo 5 combat) shows the rationality of agents when approaching combat. The
demo once again features two agents and three monsters. One of the monsters (the one on the left)
is worth a fair bit of gold and glory and is not too dangerous, another (the one on the right) is just as
dangerous but is worth very little, the third (the one at the top) is worth colossal amounts of glory

and gold but is also far too dangerous for an agent to fight. The agents will target the monster on the

37/51

Luca F. Beltrami Goal Based Agents in a Competitive Environmen

left and ignore the monster on the right, there is no reason to take risks for such little reward. After
a while one of the agents might attempt attacking the monster at the top because given the massive
reward it is worth the risk in combat (in the network term enough energy from the goal will
eventually accumulate on the competences leading to a fight with this monster). The agent will then

engage in combat, quickly realise the combat is a loosing proposition and break off.

Overall the agents can be said to act fairly rationally pursuing their priorities and avoiding dangers
that do not lead to sufficient rewards. They also display a human like tendency to, every now and

then, take immense risks that could lead to immense rewards.

1.9.4 Ease of use
One other aspect of the agent classes that was evaluated during the project was how easy it is to
write an agent behaving in a specific manner. The end result is not the most user friendly but,
assuming symbol, competence and selector classes are given, it is quite easy to build a network. For
example the road crossing agent discussed in earlier sections could be implemented with the

following code:

Sel ector Crossing selector; //create a sel ector
Synbol Ptr at X = Synbol Ptr(new St at eSynbol At Sel ect (&sel ector));
Synbol Ptr crossed = Synbol Ptr(new Goal Symbol OnQt her Si de()) ;

Conpet encePtr goToX = Conpet encePt r(new Conpt enceMoveToSel ect(entity,
&sel ector));

/1 entity is the entity supporting the agent
Conpet encePtr cross = ConpetencePtr(new ConpetenceCross(entity));
nsert (atX);

nsert (crossed);

nsert (goToX);

nsert(cross);

nsert (goToX, atX, true);

nsert(atX, cross, true);

nsert(cross, crossed, true);

nsert(cross, atX, false);

To follow the creation is initialisation idiom this code should be part of the constructor of a subclass
of AgentSpreading, but this is not necessary since all the insert() methods are public, on the other
hand the selector must be a member variable of the agent class. To ensure that selectors are updated
at the correct time the agent must override the AgentSpreading customUpdate() method to update

the selector.

38/51

Luca F. Beltrami Goal Based Agents in a Competitive Environmen

Implementing custom Symbols and Competences should also be fairly easy. Symbols will require
the overriding of the update() method inherited from StateSymbol or GoalSymbol. Competences
will require a bit more work overriding the activate(), nextOrder() and isDone() methods of the

CompetenceTemplate class.

Overall this should be fairly easy, much easier than designing the Spreading Activation network
correctly. At first sight the network design seems easy enough once the competences available to
the agent have been decided but deciding on the appropriate symbols to use as prerequisites and to
link competences can be tricky and trickiest of all is finding the right values for the parameters

controlling the network behaviour.

39/51

Luca F. Beltrami Goal Based Agents in a Competitive Environmen

1.10 Further Work

1.10.1 World Framework
The current implementation of the world framework should provide a good platform for much
further development. Extensions that require a truly 3 dimensional world will only require a new

output module, the rest of the world framework makes no assumptions of 2 dimensionality.

A very simple input system is provided (as a very thin layer over SDL) and can be extended to

provide all the controls that might be needed without changes to the core system.

The main extensions the framework itself needs are not to the core but to those parts that are built to

be extensible.

First it it would be nice to add more Sensor Managers particularly hearing and to modify the Sight

Sensor Manager so that it takes into account entities that block line of sight.

Secondly more types of entities and orders should be provided to allow more variety in what the

agents can do.

On the other hand if this project was to be truly used for research or other applications (as the basic
platform for a video game for example) I would strongly suggest a full rewrite of the core parts to

simplify the implementation of some more exotic functionality.
During the implementation of the project several flaws and inelegant constructs became clear.

The first major change would be to move entities away from using inheritance to implement

extensions to composition. Using composition has many advantages:

First it encourages to provide the full logic of each extension within the extension class itself

instead of having it mixed in the entity, this should simplify debugging extensions.

Secondly it is possible for entities to add or remove extensions at runtime and it's much easier to

integrate new extensions in an older entity.

Given the way the extensions interface is designed this move should be fairly simple but is hindered
by one of the most inelegant constructs of in the World Framework: the update() method on entities.
In the current design every entity implements an update() methods that knows how to update its
state. Some entities do not require to be updated (for example static walls), others require updating

their state only under very special circumstances yet, at the moment, every tick the system must call

40/51

Luca F. Beltrami Goal Based Agents in a Competitive Environmen

update() on them. Moreover most of the state update logic is not in the update() method but in the
Order classes, which were designed for this purpose. Annoyingly though the update() method still
contains a few key parts of the state updating logic which are closely tied to the entity and the

extensions it supports.

If entities are to support extensions through composition this is a fatal flaw. The solution is to
remove the update() making entities completely static on their own. Other objects would implement
an “Updater” interface that provides an execute() method. Updater objects would be observers to
the central time control object of the framework. Each tick the time controller would call execute()
on all the currently registered updaters. Extensions whose state is a function of time (such as the

current ExtensionCombat) could register themselves as updaters too.

This change would also ease the integration of a physics engine by making it easier to ensure that

entities do not misbehave.

Another change that could be very interesting is to remove position from the state of the entity. An
entity's position in the world is not really part of the internal state of the entity but more part of the
state of the world. Thus entities in the world could be contained within a “slot” object that
represents the position within the world. The advantage of this design is apparent when considering
items. When an item is lying on the ground it is in a certain position in the world. When the item is
carried by another entity what is its position? Should it be relative to the carrier? By having the
entity know the “slot” it exists in all these problems can be encapsulated within the “slot” itself. An
entity laying on the ground will be in a “world slot” which just stores the entity position, an entity

carried by another will be in a “inventory slot” which might reference the position of the carrier.

1.10.2 Al

The AgentSpreading class requires little further work. As of now it implements correctly all the
functionality mentioned in the paper [MAES89] and seems relatively bug free. On the other hand
there are many improvements that could be done to ease the development of specific agents that use
it as a base. The first and most crucial one is how the Al parameters 6, @, y and 9 are passed to
Symbols and Competences. At the moment these parameters are stored as static public constants in
the AgentSpreading class, this means that every agent will use the same parameters and it is
impossible to modify them in a subclass. The Symbol and Competence interfaces should be
rewritten to take these as parameters passed either on creation or in the parameters list of the

spreadEnergy() method.

41/51

Luca F. Beltrami Goal Based Agents in a Competitive Environmen

Another useful change would be to integrate the graph node class and the symbol and competence
classes more tightly. This change would simplify the spreadEnergy() code and probably improve

performance.

Finally providing a bigger library of predefined symbols competences and selectors (including a

properly implemented SelectExplore class) would make it much easier to implement new agents.

1.10.3 Actor class
While the actors developed in the project are capable of behaving somewhat rationally they are far
from the capabilities of agents developed in similar environments (referring to games such as
[MAJESTY] or [SIMS]). The actor class should be extended to handle more complex task such as
being able to hunt non static monsters, understand the concept of a “base”, communicate with other

agents and maybe collaborate with them.

The latter is probably the most complex extension, many papers have been written on algorithms
describing how agents can form groups independently on developer control such as

[GRIFFITHSO03].

One simple solution might be to develop a pair of competences “LeadGroup” and “FollowLeader”,
that allow the agent to lead a group and follow a leader repsectively. FollowLeader in its simplest
form could just be to obey every order from the group leader, but LeadGroup is far more complex:
the competence must complete for the agent to make more decisions while still leaving the agent in
“group leader mode”. This could be done by having the competence set a symbol GroupLeader and
having all the other competences produce additional orders for the subordinates if the symbol is set.

This solution is extremely primitive and doesn't explain how groups are formed or disbnaded.

Another approach to the follower side of the problem could be to treat the orders received from the
leader as percepts and have symbols in the network that respond to them, also the leader should be
able to override the selectors in the followers to maintain coordination. At this point the leader
could have a separate “Group Control” network that is activated when leading a group. This would
then take care of coordinating the group generating orders for every follower network in the group
(the leader's included). This second approach doesn't break the Spreading Activation network
design as much and allows followers a much higher degree of autonomy, in this system a follower
could decide it would rather break off from the group instead of following the leader if the orders

are against it goals. The former approach could do so but it would have to implement all of this in

42/51

Luca F. Beltrami Goal Based Agents in a Competitive Environmen

the FollowLeader competence instead of having it neatly integrated in the network. Moreover in
this latter approach orders can be much higher level instead of havign to be the low level order to

the entity.

43/51

Luca F. Beltrami Goal Based Agents in a Competitive Environmen

1.11 Conclusion

1.11.1 Usefulness of the model in practice
Despite its limitations the Spreading Activation model can certainly be used as the basis for agents
in real life applications thanks to its nice mix of qualities: a Spreading Activation agent is easy for
developers to use, it requires (relatively) little processing power and is capable of responding

dynamic environments without loosing sight of its objectives.

The ease of implementation follows from the nature of the network components. Competences
represent concrete understandable high level actions, symbols represent high level features of the
environment, the low level details are encapsulated within these two concepts. The implementation
of the energy spread algorithm can be reused without worry, like the inference engine of planning
agents. Competences and symbols are more application domain specific but it is quite likely that
they could be reused across different agents used in the same environment. Finally once the
implementation of competences and symbols 1s defined the network can be described in a fairly

simple language making changes to its structure fairly easy to carry out.

The agent requires little processing power thanks to its ability to carry out “incremental” searches.
A tree based algorithm will only search a limited number of paths to the goals, often only one
complete path, by contrast the Spreading Activation model “searches” all the possible paths and
records their “score” in the energy level of each competence. If a specific path suddenly becomes
impossible the agent already has done most of the search for alternatives. Also the search space is
tiny compared to that used by both tree/graph based algorithms and planning agents due to the

massive encapsulation of low level concerns done by the competences and symbols.

Finally the agents demonstrates a nice combination of goal orientedness and rectivness to the
environment and “ratio” of these two characteristics can be tweaked by chainging the network

parameters.

The extensions to the model made in this project are somewhat natural extensions of the original
ideas. Making the add and delete list of competences non deterministic results in possibility of
describing competences with multiple non deterministic outcomes and allows the agent to plan
around all of them. The extension is quite natural when one remember that even in the original

paper a competence could fail and execute without changing the state of the world.

Selectors are a way of implementing indexing features of the environment that makes competences

44/51

Luca F. Beltrami Goal Based Agents in a Competitive Environmen

and symbols even more reusable. A selector is an index in the features of the world that retrieves
the, object or location that most closely fulfil a certain characteristic. Again there is encapsulation

of low level details so that the implementation and understanding of the system may be easier.

There are a number of papers that have been written about implementing or extending the

Spreading Activation model, but sadly it was impossible to gain access to them. Some of them are:

« Maes, P. 1991. A Bottom-Up Mechanism for Behaviour Selection in an Artificial Creature.
In From Animals to Animats, First International Conference on Simulation of Adaptive

Behaviour. MIT Press, Cambridge, Ma.
Details the use of spreading activation network in a more complex environment

« Tyrrell, T. 1994. An Evaluation of Maes' Bottom-Up Mechanism for Behaviour Selection.
In Journal of Adaptive Behaviour 2(4): 307--348.

A critique of the approach

B. Rhodes. PHISH-nets: Planning heuristically in situated hybrid networks. Technical
report, MIT Media Lab, 1996

An improved version of Spreading Activation Networks

1.11.2 Project success evaluation
Most of the basic goals of the project as presented in the original specifications have been achieved.
The biggest change from the original objectives was dropping the comparison between Spreading
Activation network and partial planning based agents for reasons already explained in section 1.5.1.
The biggest difficulty encountered during project development was time management. The first
point where time management was a problem was when writing the first time table, as I had no idea
of how long each section would take. As the project progressed it was possible to keep up with the
original time table until the the early weeks of Term 2 where software problems cause considerable
delays. The remainder of Term 2 was spend trying to catch up with the original time table while

other academic commitments took up much more time than expected.

Now with the project completed I have a better idea of how to estimate the time taken to develop a

given piece of software and how to interleave multiple commitments.

The major design related difficulty encountered when developing the software was how to object

life management. Without a garbage collector the life of every object has to be tracked by hand and

45/51

Luca F. Beltrami Goal Based Agents in a Competitive Environmen

the object has to be destroyed when it is no longer needed. For most object the easiest way to do so
is to identify another object that “owns” it and have the owner take care of destroying the object. In
other cases the life time of the object is more complex as ownership is shared across many others.
During the design phase very little effort was put in determining the exact owners of each object
and how to best manage its life time, this caused sever problems in the later stages of development
when many unforeseen non trivial life times emerged requiring extensive modifications of the code

base.

Overall the project might have benefited from the use of more formal design tools to more clearly
define the competences of entities and many other classes. During development some parts of code

were shuffled back and forth between different classes before settling down.

1.12 Acknowledgements and thanks

Several external libraries where used in this project to simplify and speed up development:

Most of the mathematical and geometry classes used in the project are from the Ogre 3d engine (all

the files used are in the Ogrelmports directory)

Input and output are done through the Simple Direct Media Library (SDL) which greatly simplifes
integrating OpenGL with the X protocol.

Finally a few libraries from the boost project were used extensively: boost::any is at the core of the
variable system for entities, boost::lexical cast was used for debug output and
boost::smart_pointers was fundamental. Other boost libraries such as boost::graph were used as

inspiration for the implementation of some of the code.

I'd also like to thank Dr Nathan Griffiths for his invaluable help and counsel throughout the

development of the project.

46/51

Luca F. Beltrami Goal Based Agents in a Competitive Environmen

2 Appendices

2.1 Appendix A: The model file format

The files that store model description are plain text files in the following format:
All the lines are terminated by a new line (\n)
The first line contains the number of vertices in the model;
The following lines contain vertex definitions, one per line

Vertices are defined as x,y,z;r,g,b where x, y and z are the coordinates of the vertex from the

model origin and r, g, b are the colour components of the vertex (0 — 255)
The first vertex to be defined has index 0, the next index 1, the last #vertices — 1

The line after all the vertices are defined contains the number of triangles makign up the

model
The following lines contain face definitions, one per line

Faces are defined as 1,j,k where 1, j and k are the indices of the vertices that make up the

triangle in counter clockwise order

Any error in the file syntax will cause the program to fail loading the file and exit.

47/51

Luca F. Beltrami Goal Based Agents in a Competitive Environmen

2.2 Appendix B: File list

On the CD you will find the following directories: demos, docs, external libs, references and src.
demos contains five demos of the project
docs contains a copy of this document, the original specifications and the presentation in pdf format

external libs contains the source code of all the libraries used in the project (except Ogre). Refer to

the individual libraries for installation instructions
references contains a copy of all the paper referenced in the project in pdf format

src contains the full source code of the project. For building information refer to the next section.

48/51

Luca F. Beltrami Goal Based Agents in a Competitive Environmen

2.3 Appendix C: Running the demos and building the
project

To run the demos simply cd to the demo folder on the CD and run them. Running them from

another directory will result in failure to find the model files.

In all the demos in addition the agents there are 5 blue, green and red triangular objects spinning
near the centre of the world and another one randomly moving around, these are there just to show

that the program is running even when the agents might appear to be stuck.

To build the project copy the src directory somewhere. Ensure that all the required libraries are
installed (boost and sdl). Install scons anywhere you like. Then cd to the project directory and run

scons. The compiled program will be called project.

You can pass a few options to scons to tailor the building process.
debug=1 will build with debug symbols.

optimize=1 will build with optimisations.

mac=1 will change the settings to build under OS X.

49/51

Luca F. Beltrami Goal Based Agents in a Competitive Environmen

3 Bibliography

3.1 Sources referenced in the report
[SIMS] - EA Games; The Sims; 2000; http://thesims.ea.com/
[GRIFFITHSO03] - Griffiths, Luck; Coalition Formation Through Motivation and Trust; 2003
[MAJESTY] - Microprose; Majesty; 2000; http://www.majestyquest.com/
[MAESS89] - Pattie Maes; How to do the right thing; 1989
[PIRANJANOS] - Piranjan, Madsen, Granum; Bouncy: an interactive life-like pet; 1998
[RAO91] - Rao, Georgeft; Modeling rational agetns with a bdi architecture; 1991
[RAO95] - Rao, Georgeff; BDI agents: from theory to practice; 1995
[RUSSELO3] - Russel, Norvig; Artificial intelligence, a modern approach; Prentice Hall; 2003

3.2 Other Sources
3.2.1 Papers

[BOUTILIER92] - Boutilier; Toward a logic for qualitative decision theory; 1992

[CAICEDOOL1] - Caicedo, Monzani; Toward life-like agents: integrating tasks, verbal

communication and behavioural engines; 2001

[DECKER95] - Decker, Lesser; Designing a family of coordination algorithms; 1995
[PAULSO1] - Pauls; Pigs and people; 2001

[POLLACK90] - Pollack; Plans as complex mental attitudes; 1990

[RAO96] - Rao; AgentSpeak(L): BDI Agents speak out in a logical computable language; 1996

3.2.2 Books
Deitel & Deitel; How to program C++; Prentice Hall; 2003

Bruegge, Dutoit; Object-oriented software engineering; Prentice Hall; 2004
Somerville; Software engineering; Addison Wesley; 2004
Gamma, Helm, Johnson, Vlissides; Design patterns; Addison Wesley; 1995

OpenGL ARB; OpenGL programming guide; Addison Wesley; 2004

50/51

Luca F. Beltrami Goal Based Agents in a Competitive Environmen

3.2.3 Websites
All the following website were valid as of 26/04/2006

Dinkumware STL reference guide: http://www.dinkuware.com

SGI STL reference: http:/www.sgi.com/tech/stl/

Ogre: http://www.ogre3d.org

SDL: http://www.libsdl.org

boost: http://www.boost.org

Scons: http://www.scons.org

51/51

http://www.dinkuware.com/
http://www.scons.org/
http://www.boost.org/
http://www.libsdl.org/
http://www.ogre3d.org/
http://www.sgi.com/tech/stl/

	 1 Project Report
	 1.1 Abstract
	Keywords
	 1.2 TOC
	 1.3 Introduction
	 1.3.1 Objectives
	 1.3.2 Academic Aims

	 1.4 AI theory
	 1.4.1 Spreading Activation Model
	 1.4.2 Model Limitations
	 1.4.2.1 Atomic competences
	 1.4.2.2 Single exit competences
	 1.4.2.3 Static network
	 1.4.2.4 Network structure affects decisions
	 1.4.2.5 Limited goal semantics
	 1.4.2.6 Lack of memory

	 1.4.3 Extensions to the model
	 1.4.3.1 Intelligence in competences
	 1.4.3.2 The selector pattern

	 1.4.4 Other approaches
	 1.4.5 Spreading Activation model vs other AI models

	 1.5 Project organisation
	 1.5.1 Time tabling
	 1.5.2 Why C++
	 1.5.3 Development methodology and tools

	 1.6 World framework
	 1.6.1 General design considerations
	 1.6.1.1 World framework competences
	 1.6.1.2 Non quantized world
	 1.6.1.3 Timing

	 1.6.2 World
	 1.6.2.1 Entity storage
	 1.6.2.2 Path finding
	 1.6.2.3 Perceptions

	 1.6.3 Entities
	 1.6.4 AI interface
	 1.6.4.1 Percepts
	 1.6.4.2 Orders

	 1.6.5 Combat
	 1.6.6 Output

	 1.7 AI implementation
	 1.7.1 General design consideration
	 1.7.2 Graph vs set
	 1.7.2.1 Set pros and cons
	 1.7.2.2 Graph pros and cons
	 1.7.2.3 Graph implementation

	 1.7.3 The StateSymbol class
	 1.7.4 The GoalSymbol class
	 1.7.5 The CompetenceTemplate class
	 1.7.5.1 Competences vs orders

	 1.7.6 The selector class
	 1.7.7 The Agent class
	 1.7.7.1 Responsibilities and operations

	 1.8 The Actor class
	 1.8.1 Expected behaviour
	 1.8.2 Spreading Activation network

	 1.9 Evaluation
	 1.9.1 Correctness
	 1.9.2 Performance
	 1.9.2.1 AI
	 1.9.2.2 World framework

	 1.9.3 “Smartness”
	 1.9.4 Ease of use

	 1.10 Further Work
	 1.10.1 World Framework
	 1.10.2 AI
	 1.10.3 Actor class

	 1.11 Conclusion
	 1.11.1 Usefulness of the model in practice
	 1.11.2 Project success evaluation

	 1.12 Acknowledgements and thanks

	 2 Appendices
	 2.1 Appendix A: The model file format
	 2.2 Appendix B: File list
	 2.3 Appendix C: Running the demos and building the project

	 3 Bibliography
	 3.1 Sources referenced in the report
	 3.2 Other Sources
	 3.2.1 Papers
	 3.2.2 Books
	 3.2.3 Websites

